Deconstructing

 Word Questions
Year 6

Tim has read 75% of his book. He has 60 pages left to read. How many pages long is Tim's book?

60×4
$=240$ pages

3 apples and 2 pears $=£ 1.40$
1 apple and 2 pears $=80 \mathrm{p}$ What is the cost of an apple? What is the cost of a pear?

$$
\begin{aligned}
A+A+A+p+p=81.40 & \text { apple }=30 p \\
A+p+p=80 p & \text { pear }=25 p \\
2 \text { apples }=60 p &
\end{aligned}
$$

27 children are at a party. There are 3 more boys than girls. How many girls at the party?

12	3	
	12	$<$

By Gareth Metcalfe Available for digital download

DECONSTRUCTING WORD QUESTIONS Year 6
 DOWNLOAD THE TASK BUILD-UP HERE

Additive Reasoning Task Family: More Than, Less Than Additive Reasoning Mini Sequence: Money Transactions Multiplicative Reasoning Task Family: Multi-Step Multiplicative Multiplicative Reasoning Task Family: Scaling and Ratio Multiplicative Reasoning Task Family: Interpreting Remainders Fractions Mini Sequence: Missing Fraction Fractions Task Family: Fractions of a Quantity Fractions Task Family: Multi-Step Fractions Algebra Task Family: Inverse Algebra Task Family: Compare the Info

Algebra Task Family: Fixed Amount + Variable Amount Measures Task Family: Multi-Step Measures Measures Task Family: Hours and Minutes Measures Task Family: Converting Units of Time Measures Task Family: Area and Perimeter Measures Task Family: Volume Measures Task Family: Angle and Turn Measures Task Family: Derive Coordinates Statistics Task Family: Interpreting Graphs Statistics Task Family: The Mean

Click here to see how the task families can be used

Task Family: More Than, Less Than

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: choose correct bar model.

Task A: match question to bar model.

Mike has 30 stickers.
Mike has 12 more stickers than James.
How many stickers do they have in total?

More Than, Less Than

Max and Kam have $£ 80$ in total.
Max has £ 10 more than Kam.
How much money does Max have?

Answers:

Task A: Jen and Zara: D Joe and Dan: A Kam and Zoe: F Tom and Kelly: E Max and Fred: C Fay and Joy: B
Task B: Write in the names, $£ 3.50$ as the difference and $£ 5.50$ in the lower bar. The answer is the total, $£ \mathbf{1 4 . 5 0}$.
Ola has £91, Kara has £91-£28 = £63 and Fay has £250-(£91 + £63) =£96 so Fay is the top bar, Ola is the second bar and Kara is the third bar.
Label the difference, $£ 7$, and the total of $£ 33$. Dan has $£ 13$, Riley has $£ 20$.
Task C: 9 sweets more £30 15 girls, 12 boys 19 boys, 8 girls (f) 5 sweets
Task D: Leon has 5 stickers:

Kate has £26:

Rayton lost 12 matches:

Cut out. Match each question to the appropriate bar model.

More Than, Less Than

Cut out. Match each question to the appropriate bar model.

Question	Complete the bar model and answer:
Jack has £3.50 less than Ben. Ben has £9. How much money do Jack and Ben have altogether?	
Ola, Kara and Fay have £250 in total. Ola has £91. Kara has £28 less than Ola. How much money does Fay have?	
Riley has £7 more than Dan. In total, Riley and Dan have £33. How much money does Dan have?	R

Question	Complete the bar model and answer:
Jack has £3.50 less than Ben. Ben has £9. How much money do Jack and Ben have altogether?	
Ola, Kara and Fay have £250 in total. Ola has £91. Kara has £28 less than Ola. How much money does Fay have?	
Riley has £7 more than Dan. In total, Riley and Dan have £33. How much money does Dan have?	R

Question	Method and answer:
In total, Mo, Greg and Leo have 90 sweets. Greg has 29 sweets. Leo has 35 sweets. How many more sweets does Leo have than Mo?	
Lucy has £7.50. Zoe has three times as much money as Lucy. How much money do Lucy and Zoe have in total?	
There are 3 more boys than girls at the party. In total, there are 27 children at the party. How many girls at the party?	
There are 27 children in the hall. There are 11 more girls than boys in the hall. How many girls in the hall?	

More Than, Less Than

Question	Method and answer:
In total, Mo, Greg and Leo have 90 sweets. Greg has 29 sweets. Leo has 35 sweets. How many more sweets does Leo have than Mo?	
Lucy has £7.50. Zoe has three times as much money as Lucy. How much money do Lucy and Zoe have in total?	
There are 3 more boys than girls at the party. In total, there are 27 children at the party. How many girls at the party?	
There are 27 children in the hall. There are 11 more girls than boys in the hall. How many girls in the hall?	

Question	Method and answer:
Leon, Max and Dev have 24 stickers. Leon has 4 fewer stickers than Max and 5 fewer than Dev. How many stickers does Leon have?	
Dean has £5 less than Mike. Kate has £4 more than Mike. In total, Dean, Mike and Kate have £65. How much money does Kate have?	
Last season, Rayton Town played 34 football matches. They won 3 more matches than they lost. They lost 5 more matches than they drew. How many football matches did Rayton Town lose last season?	

More Than, Less Than

Question	Method and answer:
Leon, Max and Dev have 24 stickers. Leon has 4 fewer stickers than Max and 5 fewer than Dev. How many stickers does Leon have?	
Dean has £5 less than Mike. Kate has £4 more than Mike. In total, Dean, Mike and Kate have £65. How much money does Kate have?	
Last season, Rayton Town played 34 football matches. They won 3 more matches than they lost. They lost 5 more matches than they drew. How many football matches did Rayton Town lose last season?	

Mini Sequence: Money Transactions

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Mini Sequence Suggested Route:

Build 1: two slow reveal prompts.

Task A: identify missing information/question.

Task B Version 1 or Task B Version 2:

sequences of questions that gradually
increase in challenge, version 2 more difficulty in calculation.

How many shirts does he buy?

Answers:

Task A: The amount of money Jen has.
How much more money does she need?

The cost of the oranges and pears.
The amount of change Tom was given.
Task B Version 1: (a) £84
(b) $£ 1100$
(c) $£ 1.15$
(d) 5 pizza slices

Task B Version 2: (a) £551
(b) 60 p
(c) 5 pizza slices
(d) 3 pizza slices or 2 pizza slices and 5 drinks or 1 pizza slice and 10 drinks or 15 drinks

Question	Missing information/question:
Bananas cost 18p each. missing information How many bananas can Jen afford?	
Jay buys 3 oranges and 2 pears. missing information	
He pays with a £2 coin. How much change does he get?	
Holly has £5. She wants to buy two pineapples and three mangoes. Pineapples: £1.40 Mangoes: 90p missing question	
Tom bought 6 apples. Each apple cost the same amount. He paid with a £2 coin. missing information	
How much did each apple cost?	

Money Transactions

Question	Missing information/question:
Bananas cost 18p each. missing information	
Jay buys 3 oranges and 2 pears. missing information	
He pays with a £2 coin. How much change does he get?	
Holly has £5. She wants to buy two pineapples and three mangoes. Pineapples: £1.40 Mangoes: 90p missing question	
Tom bought 6 apples. Each apple cost the same amount. He paid with a £2 coin. missing information	
How much did each apple cost?	

Money Transactions

(a) Brad's target is to raise $£ 200$ for the Animal Rescue Centre. He earned $£ 82$ doing a sponsored run and £34 by washing cars. How much more does Brad have to raise?
(b) Hannah had £6700. She sold her old car for £1900 and bought a new car for £7500. How much money does Hannah have now?

Pizza Slices: $£ 1.75$ Drinks: 35p
(c) Poppy buys 2 pizza slices and a drink. She pays with a $£ 5$ note. How much change does she get?
(d) Raja buys some pizza. He pays with a $£ 10$ note and gets £ 1.25 change.
How many pizza slices does he buy?

Money Transactions

(a) Brad's target is to raise $£ 200$ for the Animal Rescue Centre. He earned $£ 82$ doing a sponsored run and $£ 34$ by washing cars. How much more does Brad have to raise?
(b) Hannah had £6700. She sold her old car for £1900 and bought a new car for £7500. How much money does Hannah have now?

Pizza Slices: $£ 1.75 \quad$ Drinks: $35 p$
(c) Poppy buys 2 pizza slices and a drink.

She pays with a $£ 5$ note.
How much change does she get?
(d) Raja buys some pizza. He pays with a $£ 10$
note and gets £1.25 change.
How many pizza slices does he buy?

Money Transactions

(a) Jen had £5800. She sold her old car for $£ 1750$ and bought a new car for £6999. How much money does Jen have now?

Pizza Slices: $£ 1.75$ Drinks: 35p

(b) Kelsey wants 3 pizza slices and a drink. She has a £5 note.
How much more money does she need?
(c) Raja buys some pizza and 2 drinks. He pays with a $£ 20$ note and gets $£ 10.55$ change.
How many pizza slices does he buy?
(d) Harry goes to the pizzeria. He pays with a £10 note and gets £4.75 change.
What could Harry have bought?
There are different possible answers.

Money Transactions

(a) Jen had £5800. She sold her old car for $£ 1750$ and bought a new car for £6999. How much money does Jen have now?

Pizza Slices: $£ 1.75$ Drinks: 35p

(b) Kelsey wants 3 pizza slices and a drink. She has a £5 note.
How much more money does she need?
(c) Raja buys some pizza and 2 drinks. He pays with a $£ 20$ note and gets $£ 10.55$ change. How many pizza slices does he buy?
(d) Harry goes to the pizzeria. He pays with a £10 note and gets £4.75 change.
What could Harry have bought?
There are different possible answers.

Task Family: Multi-Step Multiplicative Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: slow reveal questions.

Task A: which answer? (explain the mistakes)

Task B Version 1 or Task B Version 2: multi-step questions, V 1 has more scaffold than V 2 .

Build 2: slow reveal questions.

Task C and/or Task D: multi-step questions, for Task C choose the correct answer and explain the mistake.

Lee has a 2 year-old son called Harvey.
Lee is twice as tall and five times as heavy as Harvey.
Lee is 170 cm tall. How tall is Harvey? $\begin{aligned} & 170 \mathrm{~cm} \div 2 \\ & =85 \mathrm{~cm}\end{aligned}$
Mulif-Step Question

A circus is holding a concert for charity.
They can sell 250 tickets for the concert.
Adult tickets cost $£ 11$. Child tickets $\cos \dagger \mathbf{£ 6}$.

How many child tickets are sold?

What information must be given?

Answers:

Task A: Answer A Answer B Answer B Answer B
Task B Version 1: 1 kg potatoes $=£ 1.40,1.5 \mathrm{~kg}$ carrots $=£ 2.40$, total cost $=\mathbf{£ 3 . 8 0}$
2 kg carrots $=£ 3.20,3 \mathrm{~kg}$ potatoes $=£ 4.20, £ 1$ cheaper
500 g potatoes $=70 \mathrm{p}, £ 1.10-£ 0.70=40 \mathrm{p}, 40 \mathrm{p}=\mathbf{2 5 0 g}$ carrots
Task B Version $1: 900 \mathrm{~g}$ potatoes $=£ 1.26,600 \mathrm{~g}$ carrots $=£ 0.96$, total cost $=\mathbf{£ 2 . 2 2}$
1.5 kg carrots $=£ 2.40,2.5 \mathrm{~kg}$ potatoes $=£ 3.50, £ 1.10$ cheaper

600 g potatoes $=84 \mathrm{p}, £ 2.04-£ 0.84=£ 1.20, £ 1.20=750 \mathrm{~g}$ carrots
Task C: Answer B is correct. For answer A, the mistake was there are 140 adults, not 250. Answer B is correct. The mistake for answer A is 500 people travel by car, so divide by 5 . Answer A is correct. Answer B is incorrect because it gives the amount of money spent. Answer A is correct. Answer B is incorrect because $£ 2.40$ is the difference between the amounts spent, not the total spent.
Task D: $210 \times £ 17=£ 3570 \quad £ 4650-£ 3570=£ 1080 \quad £ 1080 \div 9=\mathbf{1 2 0}$ child tickets
$250 \times 5=1250 \quad 3000-1250=1750 \quad 1750 \div 60=29.17 \quad 30$ coaches needed
$£ 1.20 \times 3.5=£ 4.20 \quad £ 1.60 \times 1.5=£ 2.40 \quad £ 4.20+£ 2.40=£ 6.60 \quad £ 10-£ 6.60=£ 3.40$
$£ 1.20 \times \mathbf{3}=£ 3.60$ so Lee buys 300 g chicken. $£ 1.60 \times 2.5=£ 4$ so Rack buys 250 g turkey.
$300 \mathrm{~g}-250 \mathrm{~g}=50 \mathrm{~g}$ more meat for Lee.
Example answer: 200 g chicken (costing $£ 2.40$) and 50 g turkey (costing 80 p).

Multi-Step Multiplicative

Question	Which Answer?
The length of a rectangle is 3 times as long as the width. The length of the rectangle is 12 cm . What is the width of the rectangle?	Answer A: $12 \mathrm{~cm} \times 3=36 \mathrm{~cm}$ Answer B: $12 \mathrm{~cm} \div 3=4 \mathrm{~cm}$
There are 6 girls at the party. There are 3 times as many boys as girls at the party. How many children are there at the party?	Answer A: $6 \times 3=18$ children Answer B: $6 \times 3+6=24$ children
David is awake twice as long as he is asleep. How many hours does David sleep for each week?	Answer A: $\begin{aligned} & 24 \div 2=12 \text { hours } \\ & 12 \times 7=84 \text { hours } \end{aligned}$ Answer B: $24 \div 3=8$ hours $8 \times 7=56$ hours
At TJ Sports, tennis balls cost £2 each. At Sports Empire, tennis balls cost $£ 6$ for 4. How much cheaper is it to buy 12 tennis balls at Sports Empire than at TJ Sports?	Answer A: $£ 24+£ 18=£ 42$ Answer B: $£ 24-£ 18=£ 6$ Answer C: $£ 24-£ 12=£ 12$

Multi-Step Multiplicative

Question	Which Answer?		
$\begin{array}{l}\text { The length of a rectangle is } 3 \text { times as long as } \\ \text { the width. The length of the rectangle is } 12 \mathrm{~cm} . \\ \text { What is the width of the rectangle? }\end{array}$	$\begin{array}{l}\text { Answer A: } 12 \mathrm{~cm} \times 3=36 \mathrm{~cm} \\ \text { Answer B: } 12 \mathrm{~cm} \div 3=4 \mathrm{~cm}\end{array}$		
$\begin{array}{l}\text { There are 6 girls at the party. There are 3 times } \\ \text { as many boys as girls at the party. } \\ \text { How many children are there at the party? }\end{array}$	$\begin{array}{l}\text { Answer A: } 6 \times 3=18 \text { children } \\ \text { Answer B: } 6 \times 3+6=24 \text { children }\end{array}$		
$\begin{array}{l}\text { David is awake twice as long as he is asleep. } \\ \text { How many hours does David sleep for each } \\ \text { week? }\end{array}$	Answer A: $24 \div 2=12$ hours		
$12 \times 7=84$ hours		$]$	Answer B: $24 \div 3=8$ hours
:---			
At TJ Sports, tennis balls cost £2 each. At Sports Empire, tennis balls cost £6 for 4. How much cheaper is it to buy 12 tennis balls at Sports Empire than at TJ Sports?			
Answer B: $£ 24-£ 18=£ 6$ Answer C: $£ 24-£ 12=£ 12$			

Potatoes: $£ 1.40$ per kg
Carrots: $£ 1.60$ per kg

Question	Method and Answer:
How much does 1kg of potatoes and 1.5 kg of carrots cost?	Step 1: 1 kg potatoes = Step 2: 1.5 kg carrots = Step 3:
How much cheaper is 2kg of carrots than 3kg of potatoes?	Step 1: 2 kg carrots = Step 2: 3 kg potatoes = Step 3:
Tom buys 500 g of potatoes and some carrots. He spends $£ 1.10$.	Step 1: 500 g potatoes = Step 2: £1.10 - How many grams of carrots does he buy?

Multi-Step Multiplicative

Task B Version 1

Potatoes: $£ 1.40$ per kg
Carrots: $£ \mathbf{1 . 6 0}$ per kg

Question	Method and Answer:
How much does 1kg of potatoes and 1.5kg of carrots cost?	Step 1: 1 kg potatoes = Step 2: 1.5 kg carrots = Step 3:
How much cheaper is 2kg of carrots than 3kg of potatoes?	Step 1: 2 kg carrots = Step 2: 3 kg potatoes = Step 3:
Tom buys 500 g of potatoes and some carrots. He spends $£ 1.10$. How many grams of carrots does he buy?	Step 1: 500 g potatoes = Step 2: £1.10 - Step 3:

Potatoes: $£ 1.40$ per kg
Carrots: $£ \mathbf{1} .60$ per kg

Question	Method and Answer:
How much does 900 g of potatoes and 600 g of carrots cost?	Step 1: 900 g potatoes $=$ Step 2: 600 g carrots $=$ Step 3:
How much cheaper is 1.5 kg of carrots than 2.5 kg of potatoes?	Step 1: Step 2: Step 3:
Tom buys 600 g of potatoes and some carrots. He spends £2.04. How many grams of carrots does he buy?	Step 1: 600 g potatoes $=$ Step 2: £2.04 - Step 3:

Multi-Step Multiplicative

Task B Version 2

Potatoes: $£ 1.40$ per kg
Carrots: $£ \mathbf{1 . 6 0}$ per kg

Question	Method and Answer:
How much does 900g of potatoes and 600g of carrots cost?	Step 1: 900g potatoes = Step 2: 600g carrots = Step 3:
How much cheaper is 1.5kg of carrots than 2.5kg of potatoes?	Step 1:
Step 2:	
Step 3:	
Tom buys 600g of potatoes and some carrots. He spends £2.04. How many grams of carrots does he buy?	Step 1: 600 g potatoes = 2: £2.04 -

For each question, tick the correct answer. Then, explain the mistake.

Question	Which answer? Explain the mistake.	
A band held a concert for charity. Adult tickets $=£ 15$ Child tickets $=£ 8$ 250 tickets were sold. 110 of these were child tickets. How much money was raised?	Answer A: $\begin{aligned} & 250 \times £ 15=£ 3750 \\ & 110 \times £ 8=£ 880 \\ & £ 3750+£ 880=£ 4630 \end{aligned}$	Answer B: $\begin{aligned} & 110 \times £ 8=£ 880 \\ & 140 \times £ 15=£ 2100 \\ & £ 2100+£ 880=£ 2980 \end{aligned}$
	Explain the Mistake:	
2000 people going to the match. Coaches can fit 60 people. Cars can fit 5 people. There are 25 coaches. How many cars are needed to take everyone to the match?	Answer A: $\begin{aligned} & 60 \times 25=1500 \\ & 2000-1500=500 \end{aligned}$ 500 cars needed	Answer B: $\begin{aligned} & 2000-60 \times 25=500 \\ & 500 \div 5=100 \\ & 100 \text { cars needed } \end{aligned}$
	Explain the Mistake:	
Chicken costs $£ 1.20$ per 100g. Turkey costs $£ 1.60$ per 100 g . Beth buys 400 g of chicken. Lucy buys 250 g of turkey. How much more does Beth spend than Lucy?	Answer A: $\begin{aligned} & £ 1.20 \times 4=£ 4.80 \\ & £ 1.60 \times 2.5=£ 4 \\ & £ 4.80-£ 4=80 p \end{aligned}$	Answer B: $\begin{aligned} & £ 1.20 \times 4=£ 4.80 \\ & £ 1.60 \times 2.5=£ 4 \\ & £ 4.80+£ 4=£ 8.80 \end{aligned}$
	Explain the Mistake:	
Chicken costs $£ 1.20$ per 100 g . Turkey costs £1.60 per 100g. Tom buys chicken. Raja buys turkey. They buy the same amount of meat. Raja spends £2.40 more than Tom. How much chicken, in grams, does Tom buy?	Answer A: $\begin{aligned} & £ 1.60-£ 1.20=40 p \\ & 240 p \div 40 p=6 \\ & 6 \times 100 g=600 g \end{aligned}$	Answer B: $\begin{aligned} & £ 1.20 \times 2=£ 2.40 \\ & £ 2.40=\mathbf{2 0 0} \mathbf{g} \end{aligned}$
	Explain the Mistake:	

Multi-Step Multiplicative

Question	Method and Answer:
A band held a concert for charity. Adult tickets = £17 Child tickets = £9 The concert raised a total of $£ 4650$ 210 adult tickets were sold. How many child tickets were sold?	
3000 people going to the match. Coaches can fit 60 people. Cars can fit 5 people. There are 250 cars. How many coaches are needed to take everyone to the match?	
Chicken costs $£ 1.20$ per 100 g Turkey costs $£ 1.60$ per 100 g Amy buys 350 g of chicken and 150 g of turkey. She pays with a $£ 10$ note. How much change does she get?	
Chicken costs $£ 1.20$ per 100 g Turkey costs $£ 1.60$ per 100 g Lee spends £3.60 on chicken. Zack spends £4 on turkey. How much more meat, in grams, does Lee get than Zack?	
Chicken costs $£ 1.20$ per 100 g Turkey costs $£ 1.60$ per 100 g Chen bought some chicken and some turkey. He spent £3.20. How much turkey and chicken, in grams, could Chen have bought?	

Task Family: Scaling and Ratio

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: choose correct bar model.

Task A: match question to bar model.

Task B and/or Task C: questions with partcomplete bar models (Task B) or no support (Task C).

Build 2: slow reveal questions with bar models.

Task D Version 1 or Task D Version 2: varied questions, V 1 smaller number range than V 2 .

Max has 3 times as many conkers as Ben.
Altogether, they have $\mathbf{1 2}$ conkers.
How many conkers does Ben have?
Which picture represents the question?

Scaling and Ratio
Build 2
There are $\mathbf{3}$ times as many children as adults at the park.
There are 18 more children than adults at the park.
How many adults at the park?

Answers:

Task A: Top left: left bar model Top right: right bar model
Bottom left: right bar model Bottom right: left bar model
Task B: 5 left handed children (bar model shows a whole of 30 and 5 in each box) 18 penalties (bar model shows 12 is the value of two boxes, the value of each box is 6) 14 minutes (bar model shows 7 in each box, the difference is 14)
Task C: (a) 30 seeds
(b) 27 seeds
(c) 7 left-handed players
(d) 6 left-handed players

Task D Version 1:4 adults 2 adults 4 coins heads for every coin showing tails
Task D Version 2: 12 adults 27 adults 8 coins heads for every coin showing tails

Scaling and Ratio

Which bar model correctly represents each question?

Jay played basketball. For every 3 shots he took, he scored 1 basket.
Jay took 12 shots.
How many baskets did Jay score?

There is 1 adult for every 4 children on the school trip. 40 people go in total.
How many adults go on the school trip?

Kam played basketball. For every 3 shots he missed, he scored 1 basket.
Kam took 12 shots.
How many baskets did Kam score?

For every 3 children inside, there are 2 children outside. 60 children are inside.
How many children are outside?

Scaling and Ratio

Which bar model correctly represents each question?

Jay played basketball. For every 3 shots he took, he scored 1 basket.
Jay took 12 shots.
How many baskets did Jay score?

There is 1 adult for every 4 children on the school trip. 40 people go in total.
How many adults go on the school trip?

Kam played basketball. For every 3 shots he missed, he scored 1 basket.
Kam took 12 shots.
How many baskets did Kam score?

For every 3 children inside, there are 2 children outside. 60 children are inside.
How many children are outside?

Scaling and Ratio

Question	Complete the bar model and answer:		
For every 5 right-handed children in the class, there is 1 left-handed child. There are 30 children in the class. How many are left-handed children are there in the class?	$\begin{aligned} & \text { RH } \\ & \text { LH } \end{aligned}$		
For every 3 penalties that Fred takes, he scores 2 goals. Last season, Fred scored 12 penalties. How many penalties did Fred take?			
It takes Zara three times as long to walk to school as Rose. It takes Rose 7 minutes to walk to school. How much longer does it take Zara to walk to school than Rose?			

Scaling and Ratio

(a) For every 3 seeds that Hannah plants, 2 grow. Hannah plants 45 seeds.
How many seeds grow?
(b) Kara plants some seeds. For every 3 seeds that grow, 2 seeds do not grow. Kara plants 45 seeds. How many seeds grow?
(c) At the tennis club, there are 6 times as many right-handed players as left-handed players. There are 42 right-handed players at tennis club. How many left-handed players are there at the tennis club?
(d) At the cricket club, there are 6 times as many right-handed players as left-handed players. There are 42 players at the cricket club.
How many left-handed players are there at the cricket club?

Scaling and Ratio

(a) For every 3 seeds that Hannah plants, 2 grow.

Hannah plants 45 seeds.
How many seeds grow?
(b) Kara plants some seeds. For every 3 seeds that grow, 2 seeds do not grow. Kara plants 45 seeds.
How many seeds grow?
(c) At the tennis club, there are 6 times as many right-handed players as left-handed players. There are 42 right-handed players at tennis club. How many left-handed players are there at the tennis club?
(d) At the cricket club, there are 6 times as many right-handed players as left-handed players. There are 42 players at the cricket club. How many left-handed players are there at the cricket club?

Scaling and Ratio

Question	Drawings/calculations and answer:
There are 6 times as many children as adults on the school trip. There are 20 more children than adults on the school trip. How many adults are there on the school trip?	
At first, there were 3 times as many adults as juniors at the tennis club. Then, 8 juniors joined the tennis club. Now there are the same number of adults as juniors. How many adults at the tennis club?	
There were 12 coins on the table. Twice as many coins were showing heads as tails.	
Tom picked up two of the tails coins. Now, for every coin showing tails, how many coins are showing heads?	

Scaling and Ratio

Task D Version 1

Question	Drawings/calculations and answer:
There are 6 times as many children as adults on the school trip. There are 20 more children than adults on the school trip. How many adults are there on the school trip?	
At first, there were 3 times as many adults as juniors at the tennis club. Then, 8 juniors joined the tennis club. Now there are the same number of adults as juniors. How many adults at the tennis club?	
There were 12 coins on the table. Twice as many coins were showing heads as tails. Tom picked up two of the tails coins. Now, for every coin showing tails, how many coins are showing heads?	

Scaling and Ratio

Question	Drawings/calculations and answer:
There are 6 times as many children as adults on the school trip. There are 60 more children than adults on the school trip. How many adults are there on the school trip?	
At first, there were 3 times as many adults as juniors at the tennis club. Then, 18 juniors joined the tennis club. Now there are the same number of adults as juniors. How many adults at the tennis club?	
There were 20 coins on the table. Four times as many coins were showing heads as tails. Tom picked up two of the tails coins. Now, for every coin showing tails, how many coins are showing heads?	

Scaling and Ratio

Question	Drawings/calculations and answer:
There are 6 times as many children as adults on the school trip. There are 60 more children than adults on the school trip. How many adults are there on the school trip?	
At first, there were 3 times as many adults as juniors at the tennis club. Then, 18 juniors joined the tennis club. Now there are the same number of adults as juniors. How many adults at the tennis club?	
There were 20 coins on the table. Four times as many coins were showing heads as tails. Tom picked up two of the tails coins. Now, for every coin showing tails, how many coins are showing heads?	

Task Family: Interpreting Remainders

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: slow reveal questions.
Task D: question with multiple answers.

The hidden numbers could be... and...

Answers:

Task A: Question B rounds up to 5. For questions A and C the answer is a decimal, 4.75. Question A rounds down to 6 booklets. For questions B and C, round up to 7 .
Task B: (a) 5 boxes $\begin{array}{lllll}\text { (b) } 5 \text { boxes } & \text { (c) } 6 \text { boxes } & \text { (d) } 11 \text { boxes } & \text { (e) } 10 \text { footballs } & \text { (f) } 18 \text { cars }\end{array}$ Extend example answer: Four footballs cost £70. How much does each football cost?
Task C: 13 boxes $£ 12.50 \quad 12$ servings 400 to 415 pieces of paper
Task D: $112 \rightarrow 125$ cupcakes: with $112+13$ cupcakes, the next box would still not be full. $105 \rightarrow 112$ cupcakes: with 112-7 cupcakes, 14 boxes would be needed to hold them all.

Read the sets of 3 questions. Which question is the odd one out?

Question A: Four friends have lunch at the café. It costs £19 in total and they share the bill equally. How much money does each person pay?

Question B: 19 people are going to the match. 4 people can fit in each car. How many cars are needed?

Question C: 19 cm of ribbon is cut into four equal pieces.
How long is each piece of ribbon?

Question A: Tom is making booklets. Each booklet must have 12 sheets of paper. How many booklets can Tom make with 80 pieces of paper?

Question B: 80 children are going to the theatre. 12 children can fit in each minibus. How many minibuses are needed for all the children?

Question C: Cupcakes are packed in boxes of 12. The bakery has made 80 cupcakes. How many boxes are needed to hold all the cupcakes?

Interpreting Remainders

Read the sets of 3 questions. Which question is the odd one out?

Question A: Four friends have lunch at the café. It costs £19 in total and they share the bill equally. How much money does each person pay?

Question B: 19 people are going to the match. 4 people can fit in each car. How many cars are needed?

Question C: 19cm of ribbon is cut into four equal pieces.
How long is each piece of ribbon?

Question A: Tom is making booklets. Each booklet must have 12 sheets of paper. How many booklets can Tom make with $\mathbf{8 0}$ pieces of paper?

Question B: 80 children are going to the theatre. 12 children can fit in each minibus. How many minibuses are needed for all the children?

Question C: Cupcakes are packed in boxes of 12. The bakery has made 80 cupcakes. How many boxes are needed to hold all the cupcakes?

Interpreting Remainders

(a) Cupcakes are packed in boxes of 6 . The bakery has made 30 cupcakes.
How many full boxes can be made?
(b) Cupcakes are packed in boxes of 6 . The bakery has made 32 cupcakes.
How many full boxes can be made?
(c) Cupcakes are packed in boxes of 6 .

The bakery has made 32 cupcakes.
How many boxes are needed to hold all of the cupcakes?
(d) Cupcakes are packed in boxes of 6.

The bakery has made 64 cupcakes.
How many boxes are needed to hold all of the cupcakes?
(e) Mr Jackson has $£ 64$ to spend on footballs.

Footballs cost £6 each.
How many footballs can he afford?
(f) 70 people are going to the match.

4 people can fit in each car.
How many cars are needed for all the people?
Extend: Write a question using the calculation $70 \div 4$ where the answer is 17.5

Interpreting Remainders

(a) Cupcakes are packed in boxes of 6 .

The bakery has made 30 cupcakes.
How many full boxes can be made?
(b) Cupcakes are packed in boxes of 6.

The bakery has made 32 cupcakes.
How many full boxes can be made?
(c) Cupcakes are packed in boxes of 6 .

The bakery has made 32 cupcakes.
How many boxes are needed to hold all of the cupcakes?
(d) Cupcakes are packed in boxes of 6.

The bakery has made 64 cupcakes.
How many boxes are needed to hold all of the cupcakes?
(e) Mr Jackson has $£ 64$ to spend on footballs.

Footballs cost £6 each.
How many footballs can he afford?
(f) 70 people are going to the match.

4 people can fit in each car.
How many cars are needed for all the people?
Extend: Write a question using the calculation $\mathbf{7 0 \div 4} \mathbf{~ w h e r e ~ t h e ~ a n s w e r ~ i s ~} \mathbf{1 7 . 5}$

Question	Calculation and Answer:
The farmer packs 150 eggs into boxes. Each box can hold 12 eggs. How many boxes are needed to hold all of the eggs?	
12 friends go to a restaurant for a birthday celebration. They spend £150 and share the bill equally. How much money does each person pay?	
There is 750 g of cereal in a box. Each serving of cereal is 60 g. How many full servings of cereal per box?	
James is making booklets. There are 16 pieces of paper per booklet. James can make 25 booklets. How many pieces of paper could James have? Note: There is more than one possible answer.	

Interpreting Remainders

Question	Calculation and Answer:
The farmer packs 150 eggs into boxes. Each box can hold 12 eggs. How many boxes are needed to hold all of the eggs?	
12 friends go to a restaurant for a birthday celebration. They spend £150 and share the bill equally. How much money does each person pay?	
There is 750 g of cereal in a box. Each serving of cereal is 60g. How many full servings of cereal per box?	
James is making booklets. There are 16 pieces of paper per booklet. James can make 25 booklets. How many pieces of paper could James have? Note: There is more than one possible answer.	

Cupcakes are packed in boxes of 14 .

8 boxes can be filled with the cupcakes.
How many cupcakes could there be?
Level 1: Find an answer
Level 2: Find different answers
Level 3: Find all the answers
Cupcakes are packed in boxes of 8 .
14 boxes can be filled with the cupcakes.
How many cupcakes could there be?
Level 1: Find an answer
Level 2: Find different answers
Level 3: Find all the answers

Interpreting Remainders

Cupcakes are packed in boxes of 14. 8 boxes can be filled with the cupcakes.
How many cupcakes could there be?
Level 1: Find an answer
Level 2: Find different answers
Level 3: Find all the answers
Cupcakes are packed in boxes of 8 .
14 boxes can be filled with the cupcakes.
How many cupcakes could there be?
Level 1: Find an answer
Level 2: Find different answers
Level 3: Find all the answers

Interpreting Remainders

Cupcakes are packed in boxes of 14.
8 boxes can be filled with the cupcakes.
How many cupcakes could there be?
Level 1: Find an answer
Level 2: Find different answers
Level 3: Find all the answers

Cupcakes are packed in boxes of 8.
14 boxes can be filled with the cupcakes.
How many cupcakes could there be?
Level 1: Find an answer
Level 2: Find different answers
Level 3: Find all the answers

Mini Sequence: Missing Fraction

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Mini Sequence Suggested Route:

Build 1: questions with visual representations

Task A Version 1 or Task A Version 2:
calculations and explain method

Task B Version 1 or Task B Version 2: questions
 $\frac{6}{8}+\frac{1}{8}=$ in context, V 2 more complex than V 1 .

Answers:

Task A Version 1: $\frac{3}{8}+\frac{2}{8}=\frac{5}{8}$ (convert one fraction) $\frac{5}{15}+\frac{3}{15}=\frac{8}{15}$ (convert two fractions) $\frac{5}{10}+\frac{4}{10}+\frac{1}{10}=1$ (convert two fractions) $\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=1$ (convert one fraction)
Task A Version 2: $\frac{3}{12}+\frac{5}{12}=\frac{8}{12}$ (convert one fraction) $\frac{15}{40}+\frac{16}{40}=\frac{31}{40}$ (convert two fractions) $\frac{3}{12}+\frac{2}{12}+\frac{7}{12}=1$ (convert two fractions)
Extend: 3 answers: $\frac{1}{3}+\frac{1}{4}+\frac{5}{12}=1 \quad \frac{1}{3}+\frac{2}{4}+\frac{2}{12}=1 \quad \frac{2}{3}+\frac{1}{4}+\frac{1}{12}=1$
Task B Version 1: $\frac{4}{10} \quad \frac{1}{12} \quad 4$ hours
Task B Version 2: $\frac{9}{20} \quad \frac{8}{30} \quad 7$ hours

Missing Fraction

Question:	Method:	Workings/Answer:
$\frac{\sqrt{3}}{\sqrt{8}}+\frac{\boxed{1}}{\sqrt{4}}=\frac{\square}{\square}$	Convert one / two of the fractions into equivalent fractions.	
$\frac{\sqrt{1}}{\sqrt{3}}+\frac{\boxed{1}}{\sqrt{5}}=\frac{\square}{\square}$	Convert one / two of the fractions into equivalent fractions.	
$\frac{1}{\frac{1}{2}}+\frac{\boxed{2}}{\frac{5}{5}}+\frac{\square}{\square}=1$	Convert one / two of the fractions into equivalent fractions.	
$\frac{\frac{1}{2}}{\frac{2}{2}}+\frac{\boxed{2}}{\sqrt{6}}+\frac{\square}{\square}=1$	Convert one / two of the fractions into equivalent fractions.	

Missing Fraction

Task A Version 1

Question:	Method:	Workings/Answer:
$\frac{\sqrt{3}}{\sqrt{8}}+\frac{\boxed{1}}{\sqrt{4}}=\frac{\square}{\square}$	Convert one / two of the fractions into equivalent fractions.	
$\frac{\boxed{1}}{\sqrt{3}}+\frac{\boxed{1}}{\sqrt{5}}=\frac{\square}{\square}$	Convert one / two of the fractions into equivalent fractions.	
$\frac{\boxed{1}}{\sqrt{2}}+\frac{\boxed{2}}{\sqrt{5}}+\frac{\square}{\square}=1$	Convert one / two of the fractions into equivalent fractions.	
$\frac{\boxed{1}}{\sqrt{2}}+\frac{\boxed{2}}{\sqrt{6}}+\frac{\square}{\square}=1$	Convert one / two of the fractions into equivalent fractions.	

Missing Fraction

Question:	Method:	Workings/Answer:
$\frac{\sqrt{1}}{\frac{4}{4}}+\frac{\boxed{5}}{12}=\frac{\square}{\square}$	Convert one / two of the fractions into equivalent fractions.	
$\frac{\sqrt{3}}{\sqrt{8}}+\frac{2}{\sqrt{5}}=\frac{\square}{\square}$	Convert one / two of the fractions into equivalent fractions.	
	Convert one / two of the fractions into equivalent fractions.	

Extend: Level 1: An answer Level 2: Different answers Level 3: All possible answers
$\frac{\square}{3}+\frac{\square}{\boxed{\pi}}+\frac{\square}{\square}=1$

Missing Fraction

Task A Version 2

Question:	Method:	Workings/Answer:
$\frac{\sqrt{1}}{\frac{4}{4}}+\frac{\boxed{5}}{\sqrt{12}}=\frac{\square}{\square}$	Convert one / two of the fractions into equivalent fractions.	
$\frac{\frac{3}{2}}{\frac{8}{5}}+\frac{2}{\sqrt{5}}=\frac{\square}{\square}$	Convert one / two of the fractions into equivalent fractions.	
$\frac{\square}{\frac{1}{4}}+\frac{\square}{\boxed{6}}+\frac{\square}{\square}=1$	Convert one / two of the fractions into equivalent fractions.	

Extend:

Level 1: An answer Level 2: Different answers Level 3: All possible answers
$\frac{\square}{\sqrt{3}}+\frac{\square}{4}+\frac{\square}{\square}=1$

Missing Fraction

Question:	Answer:
Mike and Dan ate some cake. Mike ate $\frac{1}{5}$ of the cake. Dan ate $\frac{4}{10}$ of the cake. What fraction of the cake is left?	
Zara grows carrots, peas and leeks. $\frac{2}{3}$ of her garden is used for carrots. $\frac{1}{4}$ of the garden is used for peas. What fraction is left for leeks?	
On $1^{\text {st }}$ June, for $\frac{1}{3}$ of the day it was dark. For $\frac{1}{2}$ of the day it was light and cloudy. For the rest of the day it was sunny. How many hours of sunshine on $1^{\text {st }}$ June?	

Missing Fraction
Task B Version 1

Question:	Answer:
Mike and Dan ate some cake. Mike ate $\frac{1}{5}$ of the cake. Dan ate $\frac{4}{10}$ of the cake. What fraction of the cake is left?	
Zara grows carrots, peas and leeks. $\frac{2}{3}$ of her garden is used for carrots. $\frac{1}{4}$ of the garden is used for peas. What fraction is left for leeks?	
On $1^{\text {st }}$ June, for $\frac{1}{3}$ of the day it was dark. For $\frac{1}{2}$ of the day it was light and cloudy. For the rest of the day it was sunny. How many hours of sunshine on $1^{\text {st }}$ June?	

Missing Fraction

Question:	Answer:
Jen and Nadia ate some cake. Jen ate $\frac{1}{4}$ of the cake. Nadia ate $\frac{3}{10}$ of the cake. What fraction of the cake is left?	
Mo grows potatoes, onions and carrots. $\frac{2}{5}$ of his garden is used for potatoes. $\frac{1}{6}$ of the garden is used for onions. What fraction is left for carrots?	potatoes onions carrots
On $2^{\text {nd }}$ June, for $\frac{1}{3}$ of the day it was dark. For $\frac{3}{8}$ of the day it was light and cloudy. For the rest of the day it was sunny. How many hours of sunshine on $2^{\text {nd }}$ June?	

Missing Fraction

Question:	Answer:
Jen and Nadia ate some cake. Jen ate $\frac{1}{4}$ of the cake. Nadia ate $\frac{3}{10}$ of the cake. What fraction of the cake is left?	
Mo grows potatoes, onions and carrots. $\frac{2}{5}$ of his garden is used for potatoes. $\frac{1}{6}$ of the garden is used for onions. What fraction is left for carrots?	potatoes onions carrots
On $2^{\text {nd }}$ June, for $\frac{1}{3}$ of the day it was dark. For $\frac{3}{8}$ of the day it was light and cloudy. For the rest of the day it was sunny. How many hours of sunshine on $2^{\text {nd }}$ June?	24 hours dark cloudy sunny

Task Family: Fractions of a Quantity

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: questions answered with bar models.

Task A: match question to correct bar model.

Build 2: 'which bar model?’ prompts.

Task B: match 6 questions to 6 bar models.

Task C questions with part-complete bar models.

Task D: sequence of questions, including ratio examples.

Zara's book is 60 pages long.
Zara has read $\frac{3}{4}$ of her book.
How many pages does Zara have left to read?
Which bar model represents the question?

Answers:

Task A: Top left: left bar model Top right: right bar model Bottom left: right bar model Bottom right: left bar model
Task B: Kam: B Jo: C Max: D Zoe:F Roy: A Fay: E
Task C: (a) Bar model to show $\frac{3}{5}$ spent, answer $=£ 30$
(b) Bar model to show whole of 30 and $\frac{2}{5}$ tails, answer $=20$ coins show tails
(c) Bar model to show $\frac{3}{5}=30$ pages, answer $=50$ pages

Task D:
(a) 84
(b) 70
(c) 60
(d) 350 g
(e) 70 left-handed children
(f) 252 pages
$\begin{array}{lll}\text { (g) } 1050 \mathrm{~g} & \text { (h) } 1050 \text { women }\end{array}$
Extension: the answers are the same as $\frac{5}{7}$ is equivalent to a ratio of 5:2

Which bar model correctly represents each question?

Fractions of a Quantity

Which bar model correctly represents each question?
There are 12 children at the beach. $\frac{3}{4}$ of these children are girls.
How many girls at the beach?

Lucy's book is 200 pages long.
Lucy has read $\frac{3}{4}$ of her book.
How many pages does Lucy have left?

Sam plays tennis. This year, he won $\frac{2}{3}$ of his matches. Sam won 12 matches.
How many tennis matches did Sam play?

6 children in the class are left-handed.
This is $\frac{1}{5}$ of the children in the class.
How many right-handed children in the class?

Fractions of a Quantity

Cut out. Match each question to the appropriate bar model.

Kam had £60. He spent $\frac{3}{4}$ of his money on a coat. What did the coat cost?	Jo spent $\frac{1}{4}$ of her money at the shop. She had £60 left. How much did Jo spend?	Max spent $\frac{1}{4}$ of his money on a £60 pram. How much money did Max have?
Zoe had £60. She spent $\frac{3}{4}$ of her money on a bike. How much money did she have left?	Roy spent $\frac{3}{4}$ of his birthday money on a £60 toy robot. How much birthday money did Roy have?	Fay spent $£ 60$ at the shop. She has $\frac{3}{4}$ of her money left. How much money does Fay have left?
A	B	C
D	E	F

Fractions of a Quantity

Cut out. Match each question to the appropriate bar model.

Kam had $£ 60$. He spent $\frac{3}{4}$ of his money on a coat. What did the coat cost?		Jo spent $\frac{1}{4}$ of her money at the shop. She had £60 left. How much did Jo spend?				Max spent $\frac{1}{4}$ of his money on a £60 pram. How much money did Max have?			
Zoe had $£ 60$. She spent $\frac{3}{4}$ of her money on a bike. How much money did she have left?		Roy spent $\frac{3}{4}$ of his birthday money on a £60 toy robot. How much birthday money did Roy have?				Fay spent $£ 60$ at the shop She has $\frac{3}{4}$ of her money How much money does Fay have left?			
A ?		B £60				C			
£60		?				? $£ 60$			
D ?		E				F £60			
£60		£60 ?				?			

Question	Complete the bar model and answer:
(a) Tom has $£ 30$. He spends $\frac{3}{5}$ of his money on a toy. How much does the toy cost?	$£ 30$
(b) There are 30 coins on the table. $\frac{3}{5}$ are showing heads. How many are showing tails?	
(c) Jo has read $\frac{3}{5}$ of her book. She has read 30 pages. How many pages long is Jo's book?	

Fractions of a Quantity

Question	Complete the bar model and answer:
(a) Tom has $£ 30$. He spends $\frac{3}{5}$ of his money on a toy. How much does the toy cost?	£30
(b) There are 30 coins on the table. $\frac{3}{5}$ are showing heads. How many are showing tails?	
(c) Jo has read $\frac{3}{5}$ of her book. She has read 30 pages. How many pages long is Jo's book?	

Fractions of a Quantity

(a) $\frac{1}{5}$ of $420=$
(b) $\frac{1}{6}$ of $420=$
(c) $\frac{1}{7}$ of $420=$
(d) 6 plums weigh 420g. Zack eats one plum. What is the weight of the remaining plums?
(e) $\frac{5}{6}$ of the 420 children in the school are right-handed. How left-handed children are there in the school?
(f) Joy has read $\frac{2}{5}$ of her 420-page book. How many pages does she have left to read?
(g) Adam used $\frac{5}{7}$ of the sugar from the pack in the cake.

There were 420 g sugar left in the pack.
How many grams of sugar are there in the cake?
(h) For every 5 women at the concert, there were 2 men.

There were 420 men at the concert.
How many women were there at the concert?
Extension: Compare questions (g) and (h).

Fractions of a Quantity

(a) $\frac{1}{5}$ of $420=$
(b) $\frac{1}{6}$ of $420=$
(c) $\frac{1}{7}$ of $420=$
(d) 6 plums weigh 420 g . Zack eats one plum. What is the weight of the remaining plums?
(e) $\frac{5}{6}$ of the 420 children in the school are right-handed. How left-handed children are there in the school?
(f) Joy has read $\frac{2}{5}$ of her 420-page book. How many pages does she have left to read?
(g) Adam used $\frac{5}{7}$ of the sugar from the pack in the cake.

There were 420 g sugar left in the pack.
How many grams of sugar are there in the cake?
(h) For every 5 women at the concert, there were 2 men.

There were 420 men at the concert.
How many women were there at the concert?
Extension: Compare questions (g) and (h).

Task Family: Multi-Step Fractions

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: two questions answered with bar models.

Task A: compare the minimally different questions.

Build 2: two questions answered with bar models

Task B: sequence of questions, small variation to spot patterns, small number range.

Task C: sequence of questions, more variation.

Task D: extension challenge.

Oliver had £45.
He spent $\frac{1}{3}$ of his money on a watch.
He spent $£ 12$ on a cap.
How much money does he have left?

```
Freddy had £45.
He spent \(\frac{1}{3}\) of the remaining money on a watch.
```

How much money does he have left?

There were some stickers in a pack. Zara used $\frac{2}{3}$ of the stickers.
There were 10 stickers left. How many stickers were in the pack?

Kelly had some money.
Kelly spent $\frac{2}{3}$ of her money on a coat.
She spent $£ 5$ on a scarf.
Kelly had £ 10 left.
How much money did Kelly have?

Answers:

Task A: Both questions involve the same fractions and quantities. For question 2, the calculation of the value of $\frac{1}{3}$ will be based on the number of chocolates left, not the original number of chocolates.
Q1: Norley won 14 matches Q2: 16 chocolates left
The answer to Q1 is smaller than the answer to Q2 because of the difference of the part subtracted ($\frac{1}{3}$ of $30>\frac{1}{3}$ of 24).
Task B: (a) 22 stickers
(b) 24 stickers
(c) 6 sweets
(d) 60 sweets

Extend example answer: Raj gave $\frac{1}{4}$ of the sweets to his sister and ate 20 sweets.
Task C: (a) £19
(b) 48 raisins
(c) 28 stickers
(d) £68
(e) £12

Task D: There could be 40,48 or 56 raisins in the bowl (Meg could eat 5,6 or 7 raisins)

Multi-Step Fractions

Compare the questions: What's the same? What's Different?
Q1: Norley played 30 hockey matches.
They lost 6 and drew $\frac{1}{3}$ of their matches.

How many matches did Norley win?

Q2: The Taylor family had a box of 30 chocolates.
On Friday, they ate 6 chocolates.
On Saturday, they ate $\frac{1}{3}$ of the chocolates that were left.
How many chocolates were there in the box on Sunday?
'The answer to Q1 is larger/smaller than the answer to Q2 because...

Multi-Step Fractions

Compare the questions: What's the same? What's Different?
Q1: Norley played 30 hockey matches.
They lost 6 and drew $\frac{1}{3}$ of their matches.
How many matches did Norley win?

Q2: The Taylor family had a box of 30 chocolates.
On Friday, they ate 6 chocolates.
On Saturday, they ate $\frac{1}{3}$ of the chocolates that were left.
How many chocolates were there in the box on Sunday?
'The answer to Q1 is larger/smaller than the answer to Q2 because...

Multi-Step Fractions

Compare the questions: What's the same? What's Different?
Q1: Norley played 30 hockey matches.
They lost 6 and drew $\frac{1}{3}$ of their matches.
How many matches did Norley win?

Q2: The Taylor family had a box of 30 chocolates.
On Friday, they ate 6 chocolates.
On Saturday, they ate $\frac{1}{3}$ of the chocolates that were left.
How many chocolates were there in the box on Sunday?
'The answer to Q1 is larger/smaller than the answer to Q2 because...

Multi-Step Fractions

(a) Sam had 40 stickers.

He gave $\frac{1}{4}$ of his stickers to Jack and 8 stickers to Mo.
How many stickers did Sam have left?
(b) Nadia had 40 stickers. She gave 8 stickers to Helen.

She gave $\frac{1}{4}$ of the stickers that were left to Sara.
How many stickers did Nadia have left?
(c) There were 15 sweets in a packet. Max ate 6 sweets.

Max gave $\frac{1}{3}$ of the remaining sweets to Hassan.
How many sweets does Max have left?
(d) There are 15 sweets in a packet.

Ruby has 6 packets of sweets.
She gives $\frac{1}{3}$ of the sweets to Lena.
How many sweets does Ruby have left?
Extend: Replace the red words with a number/fraction. Do in different ways.
Raj had 48 sweets. He gave a fraction of the sweets to his sister. He ate some sweets.
There were 16 sweets left.

Multi-Step Fractions

(a) Sam had 40 stickers.

He gave $\frac{1}{4}$ of his stickers to Jack and 8 stickers to Mo.
How many stickers did Sam have left?
(b) Nadia had 40 stickers. She gave 8 stickers to Helen.

She gave $\frac{1}{4}$ of the stickers that were left to Sara.
How many stickers did Nadia have left?
(c) There were 15 sweets in a packet. Max ate 6 sweets.

Max gave $\frac{1}{3}$ of the remaining sweets to Hassan.
How many sweets does Max have left?
(d) There are 15 sweets in a packet.

Ruby has 6 packets of sweets.
She gives $\frac{1}{3}$ of the sweets to Lena.
How many sweets does Ruby have left?
Extend: Replace the red words with a number/fraction. Do in different ways.
Raj had 48 sweets. He gave a fraction of the sweets to his sister. He ate some sweets. There were 16 sweets left.

Multi-Step Fractions

(a) Harry had $£ 30$. He spent $\frac{1}{6}$ of his money on a hat.

He spent £6 on gloves.
How much money does Harry have left?
(b) Tom had a box of raisins.

He ate $\frac{3}{4}$ of the raisins. There were 12 raisins left.
How many raisins were there in the box to start with?
(c) Kate had some stickers. She was given 20 more stickers.

Kate used $\frac{3}{4}$ of her stickers. She had 12 stickers left.
How many stickers did Kate have to start with?
(d) Joy had some money. She spent £20 on a helmet.

Then Joy spent $\frac{3}{4}$ of the rest of her money on a scooter.
She had £ 12 left.
How much money did Joy have to start with?
(e) Amir spent $\frac{2}{5}$ of his money on a t-shirt.

He spent $£ 10$ on a pair of jeans.
Amir had £8 left.
What was the price of the t-shirt?

Multi-Step Fractions

(a) Harry had $£ 30$. He spent $\frac{1}{6}$ of his money on a hat.

He spent £6 on gloves.
How much money does Harry have left?
(b) Tom had a box of raisins.

He ate $\frac{3}{4}$ of the raisins. There were 12 raisins left.
How many raisins were there in the box to start with?
(c) Kate had some stickers. She was given 20 more stickers.

Kate used $\frac{3}{4}$ of her stickers. She had 12 stickers left.
How many stickers did Kate have to start with?
(d) Joy had some money. She spent £20 on a helmet.

Then Joy spent $\frac{3}{4}$ of the rest of her money on a scooter.
She had £12 left.
How much money did Joy have to start with?
(e) Amir spent $\frac{2}{5}$ of his money on a t-shirt.

He spent $£ 10$ on a pair of jeans.
Amir had £8 left.
What was the price of the t-shirt?

Multi-Step Fractions

There were less than 60 raisins in a bowl.
Lena ate $\frac{1}{2}$ of the raisins.
Charlotte ate $\frac{3}{4}$ of the raisins that were left.
Meg ate the remaining raisins.
Meg ate more than 4 raisins.
Question 1: Who ate more raisins, Lena or Charlotte?
Question 2: How many raisins could have been in the bowl?
Level 1: I can find an answer
Level 2: I can find different answers
Level 3: I know how many answers there are

Multi-Step Fractions

There were less than 60 raisins in a bowl.
Lena ate $\frac{1}{2}$ of the raisins.
Charlotte ate $\frac{3}{4}$ of the raisins that were left.
Meg ate the remaining raisins.
Meg ate more than 4 raisins.
Question 1: Who ate more raisins, Lena or Charlotte?
Question 2: How many raisins could have been in the bowl?
Level 1: I can find an answer
Level 2: I can find different answers
Level 3: I know how many answers there are

Multi-Step Fractions

There were less than 60 raisins in a bowl.
Lena ate $\frac{1}{2}$ of the raisins.
Charlotte ate $\frac{3}{4}$ of the raisins that were left.
Meg ate the remaining raisins.
Meg ate more than 4 raisins.
Question 1: Who ate more raisins, Lena or Charlotte?
Question 2: How many raisins could have been in the bowl?
Level 1: I can find an answer
Level 2: I can find different answers
Level 3: I know how many answers there are

Task Family: Inverse
 Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: questions represented with bar models.

Task A: fluency questions written in a sequence.

Build 2: two questions, highlighting effect of the order of the calculations.

Task B: sequence of questions, children explain relationships.

Task C: question with multiple possible answers.

Answers:

Task A: (a) Example answer: 2 and 20
(b) Example answer: 7 and 2
(c) 20
(d) 2
(e) 35
(f) 35

Task B: (a) 7
$\begin{array}{ll}\text { (b) } 7 & \text { (c) } 11\end{array}$
(d) 99

Task C: Largest: 180 (divide by 6, subtract 3) Smallest: 4 (multiply by 6, add 3)

Inverse
(a) My number was \square I add 3. Then I multiply by 4. Now my number is \square
(b) My number was \square I subtract 3. Then I divide by
2. Now my number is \square
(c) My number was \square. I add 4. Then I divide by 2. Now my number is 12.
(d) My number was \square . I add 4. Then I multiply by 2. Now my number is $\mathbf{1 2 .}$
(e) My number was 15. I multiply by 4. Then I subtract 25. Now my number is \square
(f) My number was \square I add 25. Then I divide by 4. Now my number is 15.

Inverse

(a) My number was \square . I add 3. Then I multiply by 4. Now my number is \square
(b) My number was \square. . I subtract $\mathbf{3}$. Then I divide by $\mathbf{2}$. Now my number is \square
(c) My number was \square . I add 4. Then I divide by 2. Now my number is 12.
(d) My number was \square . I add 4. Then I multiply by 2. Now my number is $\mathbf{1 2 .}$
(e) My number was $\mathbf{1 5}$. I multiply by 4. Then I subtract $\mathbf{2 5}$. Now my number is \square
\square . I add 25. Then I divide by 4. Now my number is $\mathbf{1 5}$.

Inverse
Task A
(a) My number was \square . I add 3. Then I multiply by 4. Now my number is \square
(b) My number was \square . I subtract 3. Then I divide by 2. Now my number is \square
(c) My number was \square. I add 4. Then I divide by 2. Now my number is $\mathbf{1 2}$.
(d) My number was \square. I add 4. Then I multiply by 2. Now my number is 12.
(e) My number was 15. I multiply by 4. Then I subtract 25. Now my number is \square
(f) My number was \square . I add 25. Then I divide by 4. Now my number is $\mathbf{1 5}$.

Inverse

(a) I chose a number. I multiplied my number by 3 , then added 5 . Now, my number is 26 . What number did I choose?
(b) I chose a number. I multiplied my number by 3 , then added 6 . Now, my number is 27 . What number did I choose?
(c) I chose a number. I multiplied my number by 3 , then subtracted 6 . Now, my number is 27 . What number did I choose?
(d) I chose a number. I divided my number by 3 , then subtracted 6 . Now, my number is 27 . What number did I choose?
'The answer to question \square is the same/larger/smaller than question \square because...'

Inverse

(a) I chose a number. I multiplied my number by 3 , then added 5.

Now, my number is 26 . What number did I choose?
(b) I chose a number. I multiplied my number by 3 , then added 6 . Now, my number is 27 . What number did I choose?
(c) I chose a number. I multiplied my number by 3 , then subtracted 6 .

Now, my number is 27 . What number did I choose?
(d) I chose a number. I divided my number by 3, then subtracted 6.

Now, my number is 27 . What number did I choose?
'The answer to question \square is the same/larger/smaller than question \square because...'

Inverse

(a) I chose a number. I multiplied my number by 3 , then added 5. Now, my number is 26 . What number did I choose?
(b) I chose a number. I multiplied my number by 3, then added 6. Now, my number is 27 . What number did I choose?
(c) I chose a number. I multiplied my number by 3 , then subtracted 6 . Now, my number is 27 . What number did I choose?
(d) I chose a number. I divided my number by 3 , then subtracted 6 . Now, my number is 27 . What number did I choose?
\square is the same/larger/smaller than question because...'

Inverse

My number was \square
I multiply/divide my number by 6 l add/subtract 3
Now my number is $\mathbf{2 7}$
What is the smallest number that could go in the blue box?
What is the largest number that could go in the blue box?

To make the number in the blue box as large as possible...

Inverse

My number was \square
I multiply/divide my number by 6

| add/subtract 3

Now my number is $\mathbf{2 7}$
What is the smallest number
that could go in the blue box?
What is the largest number that could go in the blue box?

To make the number in the blue box as large as possible...

Inverse
My number was \square
I multiply/divide my number by 6
| add/subtract 3
Now my number is $\mathbf{2 7}$
What is the smallest number that could go in the blue box?
What is the largest number that could go in the blue box?

To make the number in the blue box as large as possible...

Task Family: Compare the Info

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: worked example question.

Task A: two questions with scaffold prompts.

Build 2: two example questions with different surface features - compare the questions.

Task B Version 1 or Task B Version 2: questions with different surface features, more challenge in calculation for version 2.

Task C: extension questions.

The patterns are made with identical rectangles and semi-circles.

The towers are made with identical squares and identical rectangles.

Calculate the height of a rectangle and the height of and a square.

Answers:

Task A: Pattern A has one more square than Pattern B and 18 more. First step is the square.
Square $=18$, Triangle $=14$
Calculation B has two more diamonds than Calculation A and 8 more. First step is the diamond. Diamond $=4$, Star $=13$
Task B Version 1: Apple $=30$ p, Pear $=25 p$
Square $=8$ Triangle $=11$
Length $=9 \mathrm{~cm}$ Width $=5 \mathrm{~cm}$
Task B Version 2: Apple $=36 p$, Pear $=24 p$
Square $=7$ Triangle $=17$
Length $=8.5 \mathrm{~cm}$ Width $=5.5 \mathrm{~cm}$

Task C:

Question A: Banana $=28 p$ Orange $=32 p$
Question B: Impossible to answer: we know 3 chocolate bars cost 50p more than 2 packets of crisps. This does not allow us to calculate the cost of a drink.
Question C: Width $=6 \mathrm{~cm}$, Length $=17 \mathrm{~cm}$
Question D: Impossible to answer. Circle + Square $=17$, but this does not enable us to calculate the individual values of each shape.

Pattern $\mathrm{A}=50$

Pattern B = 32

Spot the differences between the patterns:

The first step is to calculate the value of the square/triangle.

Calculation A: $\stackrel{\wedge}{\Sigma}+\rangle=17$
Calculation $\mathrm{B}:\rangle+\rangle+\underset{N}{ } \mathbf{\lambda}+\rangle=25$

Spot the differences between the calculations:

The first step is to calculate the value of the star/diamond.

Compare the Info

Pattern $\mathrm{A}=50$

Pattern B = 32

Spot the differences between the patterns:

The first step is to calculate the value of the square/triangle.

Calculation A: $\stackrel{\wedge}{\wedge}+\diamond=17$
Calculation B:

公 $=$
$\diamond=$

Question	Calculations and answer:
$\mathbf{3}$ apples and $\mathbf{2}$ pears cost $£ 1.40$ $\mathbf{2}$ apples and $\mathbf{2}$ pears cost $£ 1.10$ What is the cost of a pear?	Clue: Start by calculating the cost of an apple
Pattern A Pattern B	Clue: Pattern B has __ more triangles than Pattern A
The rectangles are identical. Length = Width =	Choose: Start by calculating the length OR width

Compare the Info

Task B Version 1

Question	Calculations and answer:
$\mathbf{3}$ apples and $\mathbf{2}$ pears cost $£ 1.40$ $\mathbf{2}$ apples and $\mathbf{2}$ pears cost $£ 1.10$ What is the cost of a pear?	Clue: Start by calculating the cost of an apple
	Clue: Pattern B has __ more triangles than Pattern A
The rectangles are identical. Length = Width =	Choose: Start by calculating the length OR width

Question	Calculations and answer:
$\mathbf{3}$ apples and $\mathbf{2}$ pears cost $£ 1.56$ $\mathbf{2}$ pears and $\mathbf{1}$ apple costs $\mathbf{8 4}$ p What is the cost of a pear?	
The rectangles are identical. Length = Width =	

Compare the Info

Task B Version 2

Question	Calculations and answer:
$\mathbf{3}$ apples and 2 pears cost $\mathbf{£ 1 . 5 6}$	
2 pears and 1 apple costs 84 p	
What is the cost of a pear?	

Compare the Info

Find the question(s) that can't be answered. Answer the other questions.

Question A: $\mathbf{5}$ bananas cost $£ 1.40$ $\mathbf{2}$ bananas and $\mathbf{2}$ oranges cost $£ \mathbf{1 . 2 0}$ What is the cost of an orange?	Question B: $\mathbf{3}$ chocolate bars and a drink $=\mathbf{£ 1 . 8 0}$ $\mathbf{2}$ packets of crisps and a drink $=£ \mathbf{£} . \mathbf{3 0}$ What is the cost of a drink?
Question C: The rectangles are identical. Calculate the length of a rectangle. \square length	Question D: $\begin{aligned} & +\square=17 \\ & +\square+\square+\square=34 \\ & = \\ & = \end{aligned}$

Compare the Info

Find the question(s) that can't be answered. Answer the other questions.

Question A: 5 bananas cost $£ 1.40$ $\mathbf{2}$ bananas and $\mathbf{2}$ oranges cost $\mathbf{£ 1 . 2 0}$ What is the cost of an orange?	Question B: $\mathbf{3}$ chocolate bars and a drink $=£ \mathbf{£ 1 . 8 0}$ $\mathbf{2}$ packets of crisps and a drink $=£ \mathbf{£} \mathbf{1 . 3 0}$ What is the cost of a drink?
Question C: The rectangles are identical. Calculate the length of a rectangle. \square length	Question D: $+\quad=17$ $+\square+\square+\square=34$ =

Task Family: Fixed Amount + Variable Amount Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: explain mistakes, then answers shown.

Task A: ‘which answer?’ questions.

Build 2: questions shown with bar models.

Task B: questions, progressive challenge.

Build 3: discussion prompt.

Task C: questions, progressive challenge.

Task D: extension, children create questions.

You save money by being a member of the gym if...

Answers:

Task A: Answer B Answer C Answer F
Question 2 is the odd one out as you multiply both numbers. For question 1 and question 3, one number is multiplied and the other number is added.
Task B: (a) $(£ 8+£ 3) \times 7=£ 11$
(b) $(30 \times £ 0.15)+£ 1.95=£ 6.45$
(c) $(£ 52-£ 4) \div 6=£ 8$
(d) 5 balls (6 balls would cost £76) \quad (e) Clara's Cycles: $£ 27$, Beth's Bikes: $£ 27.50$

Task C: (a) Non-members: $12 \times £ 7.50=£ 90$ Members: $(12 \times £ 4)+£ 50=£ 98$
(b) You save money being a swimming pool member if you swim 15 times per year
(c) Members pay $£ 3.50$ less per session. To cover the $£ 50$ fee and save £20, Lara went swimming $£ 3.50 \times 20=£ 70$, so 20 times.
Task D: Children use the examples given on the task to help write their own questions.

Fixed Amount + Variable Amount

Question	Which Answer?
Mrs Evans bought 8 footballs online. They cost £7 each plus a $£ 5$ postage fee. What was the total cost?	Answer A: $\begin{aligned} & £ 7+£ 5=£ 12 \\ & £ 12 \times 8=£ 96 \end{aligned}$ Answer B: $\begin{aligned} & £ 7 \times 8=£ 56 \\ & £ 56+£ 5=£ 61 \end{aligned}$
It costs $£ 6$ per hour to hire a bike and $£ 3$ per hour to hire a helmet. How much does it cost to hire a bike and a helmet for 4 hours?	Answer C: $\begin{aligned} & £ 6+£ 3=£ 9 \\ & £ 9 \times 4=£ 36 \end{aligned}$ Answer D: $\begin{aligned} & £ 6 \times 4=£ 24 \\ & £ 24+£ 3=£ 27 \end{aligned}$
Membership at the tennis club costs $£ 15$ per year. Members can hire a tennis court for $£ 6$ per match. How much does it cost to play 8 tennis matches?	Answer E: $£ 15 \times 8+£ 6=£ 126$ Answer F: $£ 6 \times 8+£ 15=£ 63$

Which question is the odd one out? Explain why.

Fixed Amount + Variable Amount

Question	Which Answer?
Mrs Evans bought 8 footballs online. They cost £7 each plus a $£ 5$ postage fee. What was the total cost?	Answer A: $\begin{aligned} & £ 7+£ 5=£ 12 \\ & £ 12 \times 8=£ 96 \end{aligned}$ Answer B: $\begin{aligned} & £ 7 \times 8=£ 56 \\ & £ 56+£ 5=£ 61 \end{aligned}$
It costs £6 per hour to hire a bike and £3 per hour to hire a helmet. How much does it cost to hire a bike and a helmet for 4 hours?	Answer C: $\begin{aligned} & £ 6+£ 3=£ 9 \\ & £ 9 \times 4=£ 36 \end{aligned}$ Answer D: $\begin{aligned} & £ 6 \times 4=£ 24 \\ & £ 24+£ 3=£ 27 \end{aligned}$
Membership at the tennis club costs $£ 15$ per year. Members can hire a tennis court for $£ 6$ per match. How much does it cost to play 8 tennis matches?	Answer E: $£ 15 \times 8+£ 6=£ 126$ Answer F: $£ 6 \times 8+£ 15=£ 63$

Which question is the odd one out? Explain why.

Fixed Amount + Variable Amount

(a) To go surfing, each child needs surfboard and a wetsuit. It costs $£ 8$ to hire a surfboard and $£ 3$ to hire a wetsuit. How much does it cost for 7 children to go surfing?
(b) Tom prints 30 of his photos at the online store. It costs 15 p to print each photo. It costs $£ 1.95$ to post the photos.
How much does Tom pay in total?
(c) Some friends go to a show. Each ticket costs £8. They pay £4 to park at the theatre. In total, it costs the friends $£ 52$.
How many friends go to the show?
(d) Mr Jones has $£ 75$ to spend on rugby balls. At the online store, the delivery fee is £4. Each rugby ball costs $£ 12$.
How many rugby balls can Mr Jones buy?
(e) At Clara's Cycles, it costs $£ 9$ per hour to hire a bike.

At Beth's Bikes, it costs $£ 8$ plus $£ 6.50$ per hour to hire a bike. Jade wants to hire a bike for 3 hours.
Which shop will cost the least?

Fixed Amount + Variable Amount

(a) To go surfing, each child needs surfboard and a wetsuit. It costs $£ 8$ to hire a surfboard and $£ 3$ to hire a wetsuit. How much does it cost for 7 children to go surfing?
(b) Tom prints 30 of his photos at the online store. It costs 15 p to print each photo. It costs $£ 1.95$ to post the photos.

How much does Tom pay in total?

(c) Some friends go to a show. Each ticket costs £8. They pay $£ 4$ to park at the theatre. In total, it costs the friends $£ 52$.
How many friends go to the show?
(d) Mr Jones has $£ 75$ to spend on rugby balls. At the online store, the delivery fee is £4. Each rugby ball costs $£ 12$.
How many rugby balls can Mr Jones buy?
(e) At Clara's Cycles, it costs $£ 9$ per hour to hire a bike.

At Beth's Bikes, it costs $£ 8$ plus $£ 6.50$ per hour to hire a bike. Jade wants to hire a bike for 3 hours.
Which shop will cost the least?

Fixed Amount + Variable Amount

Swimming Pool Membership: $£ 50$ per year
Swim Session: £4 per session (members) or £7.50 per session (non-members)
(a) Jim goes swimming once a month.

Explain why it is cheaper for Jim not to be a swimming pool member.
(b) Complete the statement: 'You save money being a swimming pool member if...'
(c) Lara saves £20 by being a swimming pool member.

How many times does Lara go swimming?
(d) Kam and Ben go swimming the same number of times. Kam is a swimming pool member. Ben is not a member. Ben pays $£ 9.50$ more than Kam for the swimming sessions. How many times do Kam and Ben each go swimming?

Fixed Amount + Variable Amount
Swimming Pool Membership: $£ 50$ per year
Swim Session: £4 per session (members) or $£ 7.50$ per session (non-members)
(a) Jim goes swimming once a month.

Explain why it is cheaper for Jim not to be a swimming pool member.
(b) Complete the statement: 'You save money being a swimming pool member if...'
(c) Lara saves £20 by being a swimming pool member.

How many times does Lara go swimming?
(d) Kam and Ben go swimming the same number of times. Kam is a swimming pool member. Ben is not a member. Ben pays $£ 9.50$ more than Kam for the swimming sessions. How many times do Kam and Ben each go swimming?

Fixed Amount + Variable Amount
Swimming Pool Membership: £50 per year
Swim Session: £4 per session (members) or $£ 7.50$ per session (non-members)
(a) Jim goes swimming once a month.

Explain why it is cheaper for Jim not to be a swimming pool member.
(b) Complete the statement: 'You save money being a swimming pool member if...'
(c) Lara saves £20 by being a swimming pool member.

How many times does Lara go swimming?
(d) Kam and Ben go swimming the same number of times. Kam is a swimming pool member. Ben is not a member. Ben pays $£ 9.50$ more than Kam for the swimming sessions. How many times do Kam and Ben each go swimming?

Fixed Amount + Variable Amount

Option A: Buy the XC3 mobile phone for $\mathbf{£ 2 5 0}$. Then, there is a $\mathbf{£ 8}$ monthly fee for unlimited calls and data.
Option B: Buy the XC3 mobile phone for $\mathbf{£ 6 0}$. Then, there is a $\mathbf{£ 2 2}$ monthly fee for unlimited calls and data.

Write 3 questions based on this information.

Examples:

How much does an XC3 mobile phone cost using Option \mathbf{A} / \mathbf{B} for \qquad months? How much cheaper is it to buy the XC3 mobile phone using Option \mathbf{A} / \mathbf{B} for \qquad months? Jack wants a XC3 mobile phone for \qquad months. Which option is cheaper?

Fixed Amount + Variable Amount
Option A: Buy the XC3 mobile phone for $£ \mathbf{2 5 0}$. Then, there is a $£ \mathbf{8}$ monthly fee for unlimited calls and data.
Option B: Buy the XC3 mobile phone for $\mathbf{£ 6 0}$. Then, there is a $\mathbf{£ 2 2}$ monthly fee for unlimited calls and data.

Write 3 questions based on this information.

Examples:

How much does an XC3 mobile phone cost using Option \mathbf{A} / \mathbf{B} for \qquad months?
How much cheaper is it to buy the XC3 mobile phone using Option \mathbf{A} / \mathbf{B} for \qquad months? Jack wants a XC3 mobile phone for \qquad months. Which option is cheaper?

Fixed Amount + Variable Amount
Option A: Buy the XC3 mobile phone for $\mathbf{£ 2 5 0}$. Then, there is a $\mathbf{£ 8}$ monthly fee for unlimited calls and data.
Option B: Buy the XC3 mobile phone for $\mathbf{£ 6 0}$. Then, there is a $\mathbf{£ 2 2}$ monthly fee for unlimited calls and data.

Write 3 questions based on this information.

Examples:

How much does an XC3 mobile phone cost using Option \mathbf{A} / \mathbf{B} for \qquad months? How much cheaper is it to buy the XC3 mobile phone using Option \mathbf{A} / \mathbf{B} for \qquad months? Jack wants a XC3 mobile phone for \qquad months. Which option is cheaper?

Task Family: Multi-Step Measures

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: slow reveal prompt.

Task A and/or Task B: give missing information or question, Task B more challenging.

Build 2: multi-step slow reveal prompt.

Task C and/or Task D: explain mistakes and answer questions.

Task E: open-ended challenge.

Maria is baking cakes.
Maria has $\mathbf{1 . 2 \mathrm { kg }}$ of butter.
180 g of butter is needed to make a cake.
How many cakes can she make?
$1.2 \mathrm{~kg} \times 1000=1200 \mathrm{~g}$
Maria can make 6 cakes
$180 \mathrm{~g} \times 5=900 \mathrm{~g}$
$180 \mathrm{~g} \times 6=1080 \mathrm{~g}$
$180 \mathrm{~g} \times 7=1260 \mathrm{~g}$

Answers:

Task A Example Answers: Apples cost 25p each.
Each jug holds 2 litres of water.
How many bowls of cereal can be made?
A 2 m piece of ribbon is cut into strips.
Task B: Kara swims 800 m each day.
How much flour is left over?
Each booklet is made using 12 pieces of paper.
Task C: $50 \mathrm{~mm}=5 \mathrm{~cm}$. Answer $=60$ strips.
The answer should not be given as a remainder. Answer: 6 cups.
There are not 100 seconds in a minute. Answer: 1.8 litres.
$5000 \div 12=12.5$ laps.
Task D: (a) 6 litres
(b) 1500 ml or 1.5 litres
(c) 300 ml
(d) 1250 ml

Task E Example Answers: 5 children, 2 litres of water, 150 ml each
20 children, 6.25 litres, 250 ml each

Multi-Step Measures

Question	Missing information/question:
Kam has £2. missing information	
A cup holds 300ml of water. missing information	
How many cups of water can be made with 4 jugs of water?	
There is 1.5 kg of cereal in the box. Each bowl of cereal is 200g. missing question	
Each strip of ribbon is 25 cm long. How many strips of ribbon are there?	

Multi-Step Measures

Task A

Question	Missing information/question:
Kam has £2. How many apples can he afford?	
A cup holds 300ml of water. missing information How many cups of water can be made with 4 jugs of water?	
There is 1.5 kg of cereal in the box. Each bowl of cereal is 200g. missing question	
Each strip of ribbon is $25 c m$ long. How many strips of ribbon are there?	

Multi-Step Measures

Question	Missing information/question:
Kara wants to swim a total of 4km. She goes swimming once per day. missing information	
How many days does it take Kara? Answer: 5 days	
To make a loaf of bread, you need 450g of flour. Peter had 2kg of flour. He made 3 loaves of bread. missing question	
Answer: 650 g	
Jess is making booklets. She has 100 pieces of paper. missing information	
How many booklets can she make? Answer: 8 booklets	

Multi-Step Measures

Question	Missing information/question:
Kara wants to swim a total of 4km. She goes swimming once per day. missing information	
How many days does it take Kara? Answer: 5 days	
To make a loaf of bread, you need 450g of flour. Peter had 2kg of flour. He made 3 loaves of bread. missing question	
Answer: 650g	
Jess is making booklets. She has 100 pieces of paper. missing information	
How many booklets can she make? Answer: 8 booklets	

Question	Spot the Mistakes. Calculate the answers:
A piece of ribbon is 3 m long. It is cut into 50 mm strips. How many strips of ribbon now?	$\begin{aligned} & 3 \mathrm{~m} \times 100=300 \mathrm{~cm} \\ & 300 \mathrm{~cm} \div 50 \mathrm{~cm}=6 \\ & \text { Answer: } 6 \text { strips } \end{aligned}$
Mr Rushden has a 2 litre bottle of water. How many 300 ml cups can he fill?	2 litres $\times 1000=2000 \mathrm{ml}$ $2000 \div 300=6$ remainder 200 Answer: 6 remainder 200
A machine pours 150 ml juice every 5 seconds. How much juice, in litres, does it pour each minute?	$\begin{aligned} & 10 \text { secs }=300 \mathrm{ml} \\ & 100 \text { secs }=3000 \mathrm{ml} \end{aligned}$ Answer: 3 litres
A running track is 400 m per lap. Zara did a 5 km run on the track. How many laps did Zara run?	$\begin{aligned} & 5 \mathrm{~km} \times 1000=5000 \mathrm{~m} \\ & 5000 \div 400=14 \end{aligned}$ Answer: 14 laps

Multi-Step Measures

Question	Spot the Mistakes. Calculate the answers:
A piece of ribbon is 3 m long. It is cut into 50mm strips. How many strips of ribbon now?	$3 \mathrm{~m} \times 100=300 \mathrm{~cm}$ $300 \mathrm{~cm} \div 50 \mathrm{~cm}=6$ Answer: 6 strips
Mr Rushden has a 2 litre bottle of water. How many 300ml cups can he fill?	2 litres $\times 1000=2000 \mathrm{ml}$ $2000 \div 300=6$ remainder 200 Answer: 6 remainder 200
A machine pours 150ml juice every 5 seconds. How much juice, in litres, does it pour each minute?	10 secs $=300 \mathrm{ml}$ Answer: 3 litres
A running track is 400m per lap. Zara did a 5km run on the track. How many laps did Zara run?	$5 \mathrm{~km} \times 1000=5000 \mathrm{~m}$

Multi-Step Measures

(a) There are 30 children in the class.

Miss Nixon pours each child 200 ml of juice.
There is no juice left.
How much juice, in litres, did Miss Nixon have?
(b) There are 30 children in the class.

Mr Roberts has 6 litres of juice.
On sports day, each child will have a 250 ml drink.
How much more juice does Mr Roberts need?
(c) There are 25 children in the class.

Mr Rose has 8 litres of juice.
He gives each child the same amount to drink.
There is half a litre of juice left over.
How much juice is each child given?
(d) There are 15 children at football club.

The coach has 8 litres of water.
He pours each child a 450 ml drink.
How much water is left over?

Multi-Step Measures

(a) There are 30 children in the class.

Miss Nixon pours each child 200 ml of juice.
There is no juice left.
How much juice, in litres, did Miss Nixon have?
(b) There are 30 children in the class.

Mr Roberts has 6 litres of juice.
On sports day, each child will have a 250 ml drink.
How much more juice does Mr Roberts need?
(c) There are 25 children in the class.

Mr Rose has 8 litres of juice.
He gives each child the same amount to drink.
There is half a litre of juice left over.
How much juice is each child given?
(d) There are 15 children at football club.

The coach has 8 litres of water.
He pours each child a 450 ml drink.
How much water is left over?

Multi-Step Measures

Fill the boxes to give two different possible answers:

Answer A:

\square children at running club.

There are \square litres of water.

Each child has a $\square \mathrm{ml}$ drink.
There are 1.25 litres of water left.

Answer B:

\square children at running club. There are \square litres of water.

Each child has a $\square \mathrm{ml}$ drink.
There are $\mathbf{1 . 2 5}$ litres of water left.

Extend: Write a multi-step question involving measures. In your question, use two different units of measure.

Multi-Step Measures

Fill the boxes to give two different possible answers:

Answer A:

\square children at running club.
There are \square litres of water. Each child has a $\square \mathrm{ml}$ drink.

There are $\mathbf{1 . 2 5}$ litres of water left.

Answer B:

\square children at running club. There are \square litres of water. Each child has a $\square \mathrm{ml}$ drink. There are $\mathbf{1 . 2 5}$ litres of water left.

Extend: Write a multi-step question involving measures. In your question, use two different units of measure.

Multi-Step Measures

Fill the boxes to give two different possible answers:

Answer A:

\square children at running club.

There are \square litres of water. Each child has a $\square \mathrm{ml}$ drink. There are $\mathbf{1 . 2 5}$ litres of water left.

Answer B:

\square children at running club. There are \square litres of water. Each child has a $\square \mathrm{ml}$ drink.

Extend: Write a multi-step question involving measures. In your question, use two different units of measure.

Task Family: Hours and Minutes

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: questions with visual representations.

Task A and/or Task B: select the correct answer and explain the mistakes.

Answers:

Task A: $9: 35 \mathrm{pm} \quad 2$ minutes 15 seconds $\quad 1: 30 \mathrm{pm} \quad 1$ hour 40 minutes
Task B: 7:55pm 44:38 3:25pm 1:48
Task C: 36 minutes $\quad 1$ hour 52 minutes 13:49 Arrive for the 12:11 frain
Task D: Rome $\quad 4: 25 \mathrm{pm} \quad$ 11:55am 2 hours 35 minutes \quad 5:30 (the next day)

Hours and Minutes

Mike looked at his watch $1 \frac{1}{2}$ hours ago. The time was $8: 05 \mathrm{pm}$. What is the time now?	
Frank ran the 800 m race in 1 minutes answer? 58 seconds. He was 17 seconds faster than Karl. What was Karl's time for the race?	
The cricket match finished 4:20pm. It was 2 hours 50 minutes long. At what time did the cricket match start?	
Mia started driving at 4:45pmer? arrived at 6:25pm. How long, in hours and minutes, was her journey?	

Extend: For the 'Which answer?' questions, explain the mistakes.

Hours and Minutes

Mike looked at his watch $1 \frac{1}{2}$ hours ago. The time was $8: 05 \mathrm{pm}$. What is the time now?	
Frank ran the 800 m race in 1 minutes answer? 58 seconds. He was 17 seconds faster than Karl. What was Karl's time for the race?	
The cricket match finished 4:20pm. It was 2 hours 50 minutes long. At what time did the cricket match start?	
Mia started driving at 4:45pmer? arrived at 6:25pm. How long, in hours and minutes, was her journey?	

Extend: For the 'Which answer?' questions, explain the mistakes.

Adam watched a film. It finished at 9:10pm. The film was 75 minutes long. At what time did the film start?	Which answer?
Lara ran a 10 km race. Her time was 46:18. Karen finished 1 minute 40 seconds before Lara. What was Karen's race time?	
A chicken took 1 hour 45 mins to cook. The chicken was taken out of the oven at $5: 10 \mathrm{pm}$. The oven was set at $200^{\circ} \mathrm{C}$. At what time was the chicken put in the oven?	
Lucy ran a half-marathon in 2 hours. Afterwards, she said 'I want to reduce my time by 10%.' What is Lucy's target time?	Which answer? 1:80 1:40 1:48 2:12

Extend: For the 'Which answer?’ questions, explain the mistakes.

Hours and Minutes

Adam watched a film. It finished at 9:10pm. The film was 75 minutes long. At what time did the film start?	Which answer?
Lara ran a 10 km race. Her time was 46:18. Karen finished 1 minute 40 seconds before Lara. What was Karen's race time?	
A chicken took 1 hour 45 mins to cook. The chicken was taken out of the oven at $5: 10 \mathrm{pm}$. The oven was set at $200^{\circ} \mathrm{C}$. At what time was the chicken put in the oven?	
Lucy ran a half-marathon in 2 hours. Afterwards, she said 'I want to reduce my time by 10%.' What is Lucy's target time?	Which answer? 1:80 1:40 1:48 2:12

Extend: For the 'Which answer?' questions, explain the mistakes.

Hours and Minutes

Trains from Manchester to Coventry:

Manchester	$9: 58$	$10: 48$	$11: 31$		Birmingham	$11: 28$	$11: 56$
Crewe	$10: 35$	$11: 25$	$12: 08$			Rugby	$12: 11$

Question	Calculations/answer:
Karen gets to Crewe station at $11: 32$. She is travelling to Coventry. How long does she have to wait to board the next train?	
Ben gets the first train from Manchester to Coventry. How long does the journey take?	
Zoe gets the 10:48 train from Manchester. She is travelling to Northampton. At what time will she arrive?	
Raja is travelling from Rugby to Milton Keynes. He needs to be in Milton Keynes by 13:15 at the latest. At what time will he need to arrive at Rugby train station?	

Extend: Write two questions based on the train timetables.
[INFORMATION] How long does the journey take?
[INFORMATION] At what time will she arrive?

Hours and Minutes

These clocks show the time in each city when it is 4 pm in the UK:

Question			
When the time is 8:30am in New York, the time is 2:30pm in which city?			
			Martha's flight from London to
:---			
Moscow departed at 9:40am.			
The flight time is 3 hours 45			
minutes.			
When Martha arrives, what is			
the time in Moscow?			

Task Family: Converting Units of Time

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: time comparison questions.

Task A: fluency questions, comparing times.

The blue line represents 1 day

Task C Version 1 or Task C Version 2:
time/date conversion questions, version 2 more challenge.

Answers:

Task A: Left column: 2 hours > 100 minutes, 72 hours $=3$ days, 2 years > 100 weeks Right column: 240 seconds $=4$ minutes, 12 weeks < 3 months, 1 hour > 3000 seconds Extend: February $=672$ hours or 696 hours on a leap year; March $=744$ hours, answers in that range.
Task B Version 1: (a) 1 hour 40 minutes, (b) 6000 seconds
(a) 3600 minutes, (b) $2 \frac{1}{2}$ days $1^{\text {st }}$ March

Task B Version 2: (a) 2 hours 10 minutes, (b) 7800 seconds
(a) 3600 minutes, (b) $26^{\text {th }}$ May $30^{\text {th }}$ May
Task C Version 1: Jack $11^{\text {th }}$ May 195 minutes
Task C Version 2: Kim by 5 minutes 46 seconds $27^{\text {th }}$ March $\quad 28 \frac{1}{2}$ hours

Converting Units of Time

Use the symbols < = > to compare the lengths of time:

2 hours $\square 100$ minutes
72 hours $\square 3$ days
2 years $\square 100$ weeks

240 seconds $\square 4$ minutes
12 weeks $\square 3$ months
1 hour $\square 3000$ seconds
\square hours is longer than February but shorter than March.

Converting Units of Time

Task A
Use the symbols < = > to compare the lengths of time:
2 hours $\square 100$ minutes
72 hours $\square 3$ days
240 seconds $\square 4$ minutes

2 years $\square 100$ weeks
12 weeks $\square 3$ months
1 hour \square 3000 seconds

Extend: \square hours is longer than February but shorter than March.

Converting Units of Time

Use the symbols < = > to compare the lengths of time:
2 hours $\square 100$ minutes
240 seconds \square 4 minutes

72 hours $\square 3$ days
12 weeks \square 3 months

2 years $\square 100$ weeks
1 hour \square 3000 seconds

Extend: \square hours is longer than February but shorter than March.

Converting Units of Time

Use the symbols < = > to compare the lengths of time:
2 hours $\square 100$ minutes
72 hours $\square 3$ days
240 seconds $\square 4$ minutes
12 weeks $\square 3$ months
2 years $\square 100$ weeks
1 hour \square 3000 seconds

Extend: \square hours is longer than February but shorter than March.

Question	Calculations and answers:	
A film is 100 minutes long. (a)How long is the film in hours and minutes? (b)How long is the film in seconds?	1 minute $=60$ seconds	1 hour $=60$ minutes
Jo posted a letter. 60 hours later, the letter was delivered. (a) How many minutes did it take to deliver the letter? (b) How many days did it take to deliver the letter?	1 hour $=60$ minutes	1 day $=24$ hours
Harry received a letter on $5^{\text {th }}$ June. It was posted 96 hours ago. What was the date when the letter was posted?	1 day $=24$ hours	2 days $=48$ hours

Converting Units of Time

Task B Version 1

Question	Calculations and answers:		
A film is 100 minutes long. (a)How long is the film in hours and minutes? (b)How long is the film in seconds?	1 minute $=60$ seconds hour $=60$ minutes		
Zara posted a letter. 60 hours later, the letter was delivered. (a) How many minutes did it take to deliver the letter?	1 hour $=60$ minutes $\quad 1$ day $=24$ hours		
(b) How many days did it take to			
deliver the letter?		\quad	Harry received a letter on 5th
:---			
March. It was posted 96 hours ago. What was the date when the letter was posted?			

Question	Calculations and answers:
A film is 130 minutes long. (a) How long is the film in hours and minutes? (b)How long is the film in seconds?	
Jo posted a letter at 8pm on 23rd May. 60 hours later, the letter was delivered. (a) How many minutes did it take to deliver the letter?	
(b) What was the date when the letter	
was delivered?	

Converting Units of Time

Task B Version 2

Question	Calculations and answers:
A film is 130 minutes long. (a)How long is the film in hours and minutes? (b)How long is the film in seconds?	
Jo posted a letter at 8pm on 23rd May. 60 hours later, the letter was delivered. (a) How many minutes did it take to deliver the letter? (b) What was the date when the letter was delivered?	
Lee received a letter on 3rd June. It was posted 96 hours ago. What was the date when the letter was posted?	

Question	Calculations and answers:
Jack ran the marathon in 3 hours 25 minutes. Kam ran the marathon in 206 minutes. Who finished the marathon first, Jack or Kam?	
It is 27 two April. It is Amy's birthday in What date is Amy's birthday? Wo	April has ___ days.
At 8:45pm on 31 st December, how many minutes until it is the New Year?	

Converting Units of Time

Question	Calculations and answers:
Jack ran the marathon in 3 hours 25 minutes. Kam ran the marathon in 206 minutes. Who finished the marathon first, Jack or Kam?	
It is 27th April. It is Amy's birthday in two weeks. What date is Amy's birthday?	April has __ days.
At 8:45pm on 31 st December, how many minutes until it is the New Year?	

Converting Units of Time

Question	Calculations and answers:
Kim ran the marathon in 3 hours 17 minutes 19 seconds, Freya finished in 203 minutes 5 seconds. Who finished first, Kim or Freya? And by how many seconds?	
It is $10^{\text {th }}$ April. It was Mike's birthday a fortnight ago. What date is Mike's birthday?	
At 7:30am on 30st December, how many hours until it is the New Year?	

Converting Units of Time

Question	Calculations and answers:
Kim ran the marathon in 3 hours 17 minutes 19 seconds, Freya finished in 203 minutes 5 seconds. Who finished first, Kim or Freya? And by how many seconds?	
It is 10 th April. It was Mike's birthday a fortnight ago. What date is Mike's birthday?	
At 7:30am on 30st December, how many hours until it is the New Year?	

Task Family: Area and Perimeter

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: slow reveal prompt.

Task A: questions, rank by difficulty.

Build 2: multi-step slow reveal prompt.

Task B: 'which answer?' questions.

Task C: multi-step questions.

What is the perimeter of the rectangle?

Answers:

Task A: Top left: 24 cm Top right: $65 \mathrm{~cm}^{2}$ Bottom left: 15 cm Bottom right: 6 cm
Task B: Answer B (Answer A is perimeter)
Answer B (Answer A only adds two sides of the rectangle)
Answer A (Answer B doubles the perimeter, but two sides join in the middle)
Answer A (Answer B is the perimeter)
Answer B (Answer A gives the length of two sides of the rectangle)
Task C: $5 \times 8=40 \mathrm{~cm}$
$5 \times 15=75 \mathrm{~cm}^{2}$
True: If positioned on the top row in the middle or on the right
False: Doubling the perimeter quadruples the area
Draw a rectangle with dimensions 12×2

The regular pentagon and the triangle have the same perimeter. What is the perimeter of the triangle?	A rectangle has a perimeter of $36 \mathrm{~cm}^{2}$. What is the area of the rectangle?
A square has an area of $36 \mathrm{~cm}^{2}$. What is the perimeter of the square?	The length of a rectangle is double its width. It has a length of 6 cm . What is the perimeter of the rectangle?

Extend: Rank the questions from easiest to hardest. Explain your choices.

Area and Perimeter

Task A

The regular pentagon and the triangle have the same perimeter.
What is the perimeter of the triangle?

A square has an area of $36 \mathrm{~cm}^{2}$.
What is the perimeter of the square?

A rectangle has a perimeter of $36 \mathrm{~cm}^{2}$. What is the area of the rectangle?

The length of a rectangle is double its width. It has a length of 6 cm .
What is the perimeter of the rectangle?

Extend: Rank the questions from easiest to hardest. Explain your choices.

Area and Perimeter

For each question, tick the correct answer and for the incorrect answer, explain the mistake.

Question	Which answer is correct? Explain the mistake.
What is the area of the square?	Answer A: $7 \mathrm{~cm} \times 4=\mathbf{2 8} \mathrm{cm}$ Answer B: $7 \mathrm{~cm} \times 7 \mathrm{~cm}=49 \mathrm{~cm}^{2}$
What is the perimeter of the rectangle?	Answer A: $\begin{aligned} & 28 \mathrm{~cm} \div 4=7 \mathrm{~cm} \\ & 7 \mathrm{~cm}+4 \mathrm{~cm}=11 \mathrm{~cm} \end{aligned}$ Answer B: $\begin{aligned} & 28 \mathrm{~cm} \div 4=7 \mathrm{~cm} \\ & (7 \mathrm{~cm}+4 \mathrm{~cm}) \times 2=22 \mathrm{~cm} \end{aligned}$
A rectangle is made with two squares. Each square has a perimeter of 12 cm . What is the perimeter of the rectangle?	Answer A: $\begin{aligned} & 12 \mathrm{~cm} \div 4=3 \mathrm{~cm} \\ & 3 \mathrm{~cm} \times 6 \mathrm{~cm}=18 \mathrm{~cm} \end{aligned}$ Answer B: $12 \mathrm{~cm} \times 2=\mathbf{2 4} \mathrm{cm}$
What is the area of the shape?	Answer A: $\begin{aligned} & 15 \mathrm{~cm} \div 3=5 \mathrm{~cm} \\ & 5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 4=100 \mathrm{~cm}^{2} \end{aligned}$ Answer B: $\begin{aligned} & 15 \mathrm{~cm} \div 3=5 \mathrm{~cm} \\ & 5 \mathrm{~cm} \times 10=50 \mathrm{~cm} \end{aligned}$
Both shapes have the same perimeter. What is the length of the rectangle?	Answer A: $\begin{aligned} & 5 \mathrm{~cm} \times 6=30 \mathrm{~cm} \\ & 30 \mathrm{~cm}-12 \mathrm{~cm}=18 \mathrm{~cm} \end{aligned}$ Answer B: $\begin{aligned} & 5 \mathrm{~cm} \times 6=30 \mathrm{~cm} \\ & 30 \mathrm{~cm}-12 \mathrm{~cm}=18 \mathrm{~cm} \\ & 18 \mathrm{~cm} \div 2=9 \mathrm{~cm} \end{aligned}$

Task Family: Volume

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: introductory examples and terminology.

Task A: intro task, making cuboids with cubes.

Build 2: slow reveal example questions.

Task B: questions, select the correct answer and explain mistakes.

Task C: reasoning and problem-solving tasks.

Task D: multi-step extension question.

Answers:

Task A: Example dimensions: $1 \times 2 \times 24$

$$
6 \times 4 \times 2 \quad 8 \times 3 \times 2 \quad 2 \times 2 \times 12
$$

Task B: $64 \mathrm{~cm}^{3} \quad 8 \mathrm{~cm} \quad 8 \mathrm{~cm}^{3}$
Task C: Cube A $=64 \mathrm{~cm}^{3}$, Cube B $=125 \mathrm{~cm}^{3}$, Difference $=61 \mathrm{~cm}^{3}$
Example dimensions: $20 \mathrm{~cm} \times 5 \mathrm{~cm} \times 6 \mathrm{~cm} \quad 12 \mathrm{~cm} \times 10 \mathrm{~cm} \times 5 \mathrm{~cm} \quad 25 \mathrm{~cm} \times 4 \mathrm{~cm} \times 6 \mathrm{~cm}$ True: Doubling one dimension of a cuboid doubles the volume $(2 \times 2 \times 3=12,2 \times 2 \times 6=12)$
Task D : The area of each square $=54 \div 6=9 \mathrm{~cm}^{2}$, therefore the length of each square is 3 cm . To calculate the volume: $3 \mathrm{~cm} \times 3 \mathrm{~cm} \times 3 \mathrm{~cm}=\mathbf{2 7} \mathrm{cm}^{\mathbf{3}}$

Volume

Think of different cuboids than can be made with 48 cubes.
Give the dimensions of the cuboids.
Answer 1: \square \times \square \times

dimensions
$2 \times 3 \times 5=30$

Can one cube be made with 48 small cubes?

Volume

Think of different cuboids that can be made with 48 cubes.
Give the dimensions of the cuboids.
Answer 1: \square \times \square
\square $=48$

dimensions
$2 \times 3 \times 5=30$

Can one cube be made with 48 small cubes?

Volume

Think of different cuboids that can be made with 48 cubes.
Give the dimensions of the cuboids.

dimensions
$2 \times 3 \times 5=30$

Can one cube be made with 48 small cubes?

Question	Which answer? Show calculations:

Volume

| Question | Which answer? Show calculations: |
| :--- | :--- | :--- |

Question and Calculations/Answers:

My cuboid is double the length of Cuboid B but has the same width
 and height. True or False: 'My cuboid's volume is double Cuboid B'

Volume

Question and Calculations/Answers:

Volume

The net of a cube has an area of $54 \mathrm{~cm}^{2}$.

The net is made into a cube.
What is the volume of the cube?

Volume

The net of a cube has
an area of $54 \mathrm{~cm}^{2}$.

The net is made into a cube.
What is the volume of the cube?

Volume

The net of a cube has an area of $54 \mathrm{~cm}^{2}$.

The net is made into a cube.
What is the volume of the cube?

Volume

The net of a cube has an area of $54 \mathrm{~cm}^{2}$.

The net is made into a cube.
What is the volume of the cube?

Task Family: Angle and Turn

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: clockwise/anticlockwise turn questions.

Task A: clockwise/anticlockwise turn questions, multiple possible answers.

When the spinner turns
it will point at the number

Estimate the size of angle C.
To calculate angle C, I need to know...

Calculate angle C.

Task C: reasoning and multi-step questions.

Answers:

Task A: Example answers: 90° clockwise 270° anticlockwise 450° clockwise Example answers: 330° clockwise 30° anticlockwise 390° anticlockwise Example answers: 61° clockwise 271° anticlockwise $\quad 425^{\circ}$ clockwise
Task B: A $=114^{\circ}$ (the 55° and 59° angles are redundant information)
$B=60^{\circ}$ (the isosceles triangle is redundant information)
$C=54^{\circ}$
Task C: Angle B can't be calculated as there are two unknown angles in the triangle.
270° clockwise and 450° anticlockwise turns point in the same direction, so a 540° clockwise turn is the odd one out.
Triangle 1: $40^{\circ}, \mathbf{7 0}, \mathbf{7 0}$ Triangle 2: $\mathbf{4 0 ^ { \circ }}, \mathbf{4 0 ^ { \circ }}, 100^{\circ}$

Question	Different Possible Answers:
After a spin, the arrow points at 6.	\square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn.
After a spin, the arrow points at 7.	\square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn.
After a spin, the arrow points in between 8 and 9.	\square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn.

Angle and Turn

Task A

Question	Different Possible Answers:
After a spin, the arrow points at 6 .	\square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn.
After a spin, the arrow points at 7.	\square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn.
After a spin, the arrow points in between 8 and 9.	\square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn. \square clockwise / anticlockwise turn.

Angle and Turn

Question B:

Question A:

$C=$

Rank the questions by difficulty (easiest to hardest). Explain your choices.

Angle and Turn

Question B:

Question A:
Task B

$C=$

Rank the questions by difficulty (easiest to hardest). Explain your choices.

Question	Answers and explanations:
270° clockwise turn 450° anticlockwise turn 540° clockwise turn Which one is the odd one out?	
One of the angles of an isosceles triangle is 40°. What could the other two angles be? There are two possible answers.	

Angle and Turn

Task C

Question	Answers and explanations:
270° clockwise turn 450° anticlockwise turn 540° clockwise turn Which one is the odd one out?	
One of the angles of an isosceles triangle is 40°. What could the other two angles be? There are two possible answers.	

Task Family: Derive Coordinates

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: calculating midpoints.

Task A: calculating midpoint questions.

Build 2: estimation with coordinates.

Task B: coordinates reasoning questions.

Build 3: worked example question in small steps.

Task C and/or Task D: questions, increasing complexity.

Task E: extension challenge.

Answers:

Task A: Left column: 6910 Right column: 8, 5, 3
Task B: Top left: $\operatorname{Not}(7,7)$ or $(6,14)$ as x is greater than y. Top right: Example inside $(4,7)$ Bottom left: Not (5,0) as y is more than 0 . $\operatorname{Not}(2,5)$ or $(7,2)$ as $x=5$.
Bottom right: $(6,11)$ is above, $(3,6)$ is to the left, $(5,1)$ is below.
Task C: A: $(8,5) \quad$ B: $(16,0) \quad \mathrm{C}:(11,8) \quad \mathrm{D}:(19,3) \quad \mathrm{E}:(9,7) \quad$ F: $(18,4) \quad \mathrm{G}:(6,10) \quad \mathrm{H}:(12,4)$
Task D: Top question, example answers top: Edge (f,g) Inside (h,j) Outside (u,I)
Bottom question: J: (g,k) K: (s,b) Example answers edge (a,s) outside (k,m)
Task E:

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

'The method for calculating a midpoint is...'

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

'The method for calculating a midpoint is...'

Derive Coordinates

Task A
Each red dot is the midpoint between the blue dots. Calculate the midpoints:

'The method for calculating a midpoint is...'

Derive Coordinates

Which of these coordinates could be inside the square?

Which of these coordinates could be on the blue line?

$(5,0)$
$(2,5)$
$(7,2)$

Derive Coordinates

Which of these coordinates could be inside the square?
$(10,4)$
$(24,10)$
$(7,7)$
$(6,14)$
$(4,2)$

Which of these coordinates could be on the blue line?

Write 2 coordinates that could be in the square and 2 coordinates that are not in the square.

Could be in square:

Not in square:
$() \quad,($,

Which of these coordinates are outside of the rectangle?

$\xrightarrow{\square} \quad(4,2)$

Which of these coordinates are outside of the rectangle?

Derive Coordinates

What's the same?
What's different?

What's the same?
What's different?

Derive Coordinates

What's the same? What's different?

Derive Coordinates

$(-3,12)$

J: (,)
k: (,)
Two coordinates on the edge of the rectangle:
$(),($,
Two coordinates on the outside of the rectangle:
$(),($,

Derive Coordinates

J: (,)
k: (,)
Two coordinates on the edge of the rectangle:
$(),($,
Two coordinates on the outside of the rectangle:
(.) 1 .)

Derive Coordinates

The rectangles are identical sizes. Plot the coordinates:

$(11,18)$	$(15,2)$
$(17,11)$	$(9,8)$
$(18,15)$	$(7,2)$

Extend: Find the midpoint of each rectangle.

Derive Coordinates

The rectangles are identical sizes.

Derive Coordinates

The rectangles are identical sizes.

Task Family: Interpreting Graphs

Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file. This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: analysing different graph types.

Task A: selecting graph types.

Build 2: worked examples of graphs.
\downarrow
Task B: questions, bar graph and pie charts.
1
Build 3: interpret and compare line graphs.

Task C Version 1 or Task C Version 2: questions, line graphs.

Answers:

Task A: Groups of won/drawn/lost shown by pie chart or bar graph. Pie chart would compare the sections clearly.
A line graph will show the ongoing change of the temperature in a greenhouse.
Lots of groups of information, so can be shown by a bar graph (hard to compare small groups with a pie chart)
A line graph will show the ongoing growth of the sunflower.
Task B: 29 children go to choir 57 children go to sports clubs
7 more girls than boys at chess club $\quad 40 \%$ boys at running club (10 out of 25 children) Lost 14 matches (accept small approximation errors)
8 draws last season, 4 draws this season, 4 more draws (accept small approximation errors)
Task C Version 1 and Version 2: Top left: 11:10am Top right: 6 hours 40 minutes Bottom left: $7.2^{\circ} \mathrm{C} \quad$ Bottom right: The temperature is always above $10^{\circ} \mathrm{C}$. Having a narrower scale makes the changes in the temperature easier to see on the graph. Speed graph: look for a speed above $20 \mathrm{~km} / \mathrm{h}$ for the middle hour. Speed is 0 for 15 minutes. The highest speed in the last 15 minutes, must be more than $20 \mathrm{~km} / \mathrm{h}$.
Distance graph: start at 0 , a slow rise in distance for 30 minutes then a steeper rise for the next hour. The line is horizontal for 15 minutes then is at its steepest for the last 15 minutes, finishing at the top-right corner.

Context	Graph Type	Explain your choice:
Graph to show the football matches won, drawn and lost by York Rovers FC last season.	Bar graph Pie chart Line graph	
Graph to show the temperature in the greenhouse on Tuesday.	Bar graph Pie chart Line graph	
Graph to show pets owned by all the children in the class.	Bar graph Pie chart Line graph	
Graph to show the height of a sunflower since the seed was planted.	Bar graph Pie chart Line graph	

Interpreting Graphs

Context	Graph Type	Explain your choice:
Graph to show the football matches won, drawn and lost by York Rovers FC last season.	Bar graph Pie chart Line graph	
Graph to show the temperature in the greenhouse on Tuesday.	Bar graph Pie chart Line graph	
Graph to show pets owned by all the children in the class.	Bar graph Pie chart Line graph	
Graph to show the height of a sunflower since the seed was planted.	Bar graph Pie chart Line graph	

Interpreting Graphs

Children at After-School Clubs

How many children go to choir?	How many children go to sports clubs?
How many more girls than boys go to chess club?	What percentage of the children at running club are boys?

Extend: rank the questions by difficulty
The pie charts show the proportion of matches that Warton Town Football Club won, lost and drew last season and this season.
Last season, Warton Town FC drew 8 matches.
This season, Warton Town FC have played 20 matches.
Warton Town FC lost how many matches last season?

How many more matches did Warton Town FC draw last season than this season?

True or false: Warton Town FC won more matches last season.

This Season

Interpreting Graphs

Task C Version 1
Garden and Greenhouse Temperatures

- Greenhouse
- Garden

Which Answer? Explain the mistakes

| At what time is the temperature in the |
| :--- | :--- |
| garden $13^{\circ} \mathrm{C}$? |

Kelsey went for a 40 km bike ride. It took her 2 hours.
For the first 30 minutes, Kelsey cycled slowly. She cycled more quickly for the next hour. Then, Kelsey stopped for 15 minutes. She cycled quickly for the last 15 minutes.
Finish the line graphs to show the possible speed and distance covered by Kelsey on her bike ride.

Interpreting Graphs

Garden and Greenhouse Temperatures

At what time is the temperature in the garden $13^{\circ} \mathrm{C}$?

For how long is the temperature above $20^{\circ} \mathrm{C}$ in the greenhouse?

Why does the graph start from $10^{\circ} \mathrm{C}$ rather than $0^{\circ} \mathrm{C}$?

Kelsey went for a 40km bike ride. It took her 2 hours.
For the first 30 minutes, Kelsey cycled slowly. She cycled more quickly for the next hour. Then, Kelsey stopped for 15 minutes. She cycled quickly for the last 15 minutes.
Complete the line graphs to show the possible speed and distance covered by Kelsey on her bike ride.

Task Family: The Mean
 Teacher Guide

Click here to download the Deconstructing Word Questions - Build-Up file.
This document provides the Build tasks for each task family.

Task Family Suggested Route:

Build 1: analyse contexts for using the mean.

Task A: analyse contexts for using the mean.

Build 2: explain mistakes, answers modelled.

Task B: explain mistakes, answer questions.

Task C: varied fluency questions.

Build 3: slow reveal tasks.

Task D and/or Task E: multi-step word questions, Task E is more challenging.

For each example, can the mean be calculated? Why would the mean be calculated?

The mean number of days in a week.
The mean number of baskets scored by a netball player per match.
The mean price of a mango in the supermarket.
The mean happiness you feel each morning.
The mean height of an adult giraffe.

Here are the shoe sizes for five children:
3, 4, 3, 7, 3
The mean shoe $>$
The mean shoe size is size 4

The rugby team Layton Warriors played 3 matches.

Their mean number of points per match was 20
Match 1: 21 points
Match 2: 26 points
Match 3: \square points

Answers:

Task A: For baby weight and electricity bills, a mean can be calculated and there is a purpose to knowing the mean. Note the distinction from a division calculation where each value is the same (e.g. the cost of each egg). The mean friendliness of a dog can be estimated but not measured!
Task B: Blue: should divide by 4 as there are 4 numbers.
Red: The 3 numbers given have a sum of 20 , not an average of 20 .
Green: The total cost of all the tickets has not been calculated. There are three adult tickets, not one, and four tickets have been bought.
Task C: (a) 9
(b) 9
(c) Example: 13, 14, 15
(d) 2
(e) $20 p$
(f) 17 p

Task D: (a) 32 runs
(b) 108 runs
(c) 15 points

Task E: 4 answers: $8,11,14,15 \quad 8,12,13,15 \quad 9,10,13,16 \quad 9,11,12,16$
Extend: 24 years old

Tick the examples where the mean can be calculated and is useful.
(a) What is the mean weight of a new-born baby?
(b) A pack of 6 eggs costs $£ 1.20$. What is the mean cost of each egg?
(c) How friendly is the average dog? Give the answer as a mean.
(d) What is the mean amount of electricity used by each house per month?

For one example, explain how calculating the mean could be useful:

The Mean

Tick the examples where the mean can be calculated and is useful.
(a) What is the mean weight of a new-born baby?
(b) A pack of 6 eggs costs $£ 1.20$. What is the mean cost of each egg?
(c) How friendly is the average dog? Give the answer as a mean.
(d) What is the mean amount of electricity used by each house per month?

For one example, explain how calculating the mean could be useful:

The Mean

Tick the examples where the mean can be calculated and is useful.
(a) What is the mean weight of a new-born baby?
(b) A pack of 6 eggs costs $£ 1.20$. What is the mean cost of each egg?
(c) How friendly is the average dog? Give the answer as a mean.
(d) What is the mean amount of electricity used by each house per month?

For one example, explain how calculating the mean could be useful:

The Mean

Explain the mistakes. Give the correct answer.

What is the mean of $\mathbf{7 , 5 , 9}$ and $\mathbf{3}$? $\begin{gathered} 7+5+9+3=24 \\ 24 \div 3=8 \end{gathered}$	The mistake is... Answer:
Give 3 numbers with a mean of 20. 8, 5 and 7	The mistake is... Answer:
Adult cinema tickets: $£ \mathbf{9}$ each Child cinema tickets: $£ \mathbf{5}$ each 3 adults and 1 child go to the cinema. What is the mean cost of each ticket? $\begin{aligned} £ 9+£ 5 & =£ 14 \\ £ 14 \div 2 & =£ 7 \end{aligned}$	The mistake is... Answer:

The Mean
Explain the mistakes. Give the correct answer.

What is the mean of $\mathbf{7 , 5 , 9}$ and $\mathbf{3}$? $\begin{gathered} 7+5+9+3=24 \\ 24 \div 3=8 \end{gathered}$	The mistake is... Answer:
Give $\mathbf{3}$ numbers with a mean of 20. 8,5 and 7	The mistake is... Answer:
Adult cinema tickets: $£ 9$ each Child cinema tickets: $£ 5$ each 3 adults and 1 child go to the cinema. What is the mean cost of each ticket? $\begin{aligned} £ 9+£ 5 & =£ 14 \\ £ 14 \div 2 & =£ 7 \end{aligned}$	The mistake is... Answer:

The Mean

(a) Calculate the mean of 12,7 and 8
(b) Calculate the mean of 7, 12, 8 and 9
(c) The mean of three numbers is 14 . The numbers could be \square

(d) The mean of these numbers is 6: 9

95

5	8

\square
(e) Bananas cost $15 p$ each. Apples cost 25 p each.

What is the mean cost per piece of fruit?
(f) Bananas cost 15 p each. Apples cost $25 p$ each.

Tim buys 4 bananas and an apple.
What is the mean cost per piece of fruit?

The Mean

(a) Calculate the mean of 12,7 and 8
(b) Calculate the mean of $7,12,8$ and 9
(c) The mean of three numbers is 14 . The numbers could be \square
\square
(d) The mean of these numbers is $6: \begin{array}{llll}9 & 5 & 5 & \square\end{array}$
(e) Bananas cost $15 p$ each. Apples cost 25 p each.

What is the mean cost per piece of fruit?

(f) Bananas cost $15 p$ each. Apples cost 25 p each.

Tim buys 4 bananas and an apple.
What is the mean cost per piece of fruit?

The Mean

(a) Calculate the mean of 12,7 and 8
(b) Calculate the mean of $7,12,8$ and 9
(c) The mean of three numbers is 14 . The numbers could be $\square \square \square$
(d) The mean of these numbers is 6:

5	8

(e) Bananas cost $15 p$ each. Apples cost $25 p$ each.

What is the mean cost per piece of fruit?
(f) Bananas cost $15 p$ each. Apples cost $25 p$ each. Tim buys 4 bananas and an apple.
What is the mean cost per piece of fruit?

The Mean

(a) Zack played 5 cricket matches, scoring a mean of 30 runs per match. These were his scores in his first four matches: $38,5,24,12$

How many runs did Zack score in his fifth match?

(b) Helen played 4 cricket matches, scoring a mean of 32 runs per match. These were her scores in her first three matches: $7,12,1$
How many runs did Helen score in her fourth match?
(c) Amy played 3 basketball matches, scoring a mean of 14 points per match.

Amy scored 6 more points in her first match than her second match. She scored 18 points in her third match.
How many points did Amy score in her first match?

The Mean

(a) Zack played 5 cricket matches, scoring a mean of 30 runs per match. These were his scores in his first four matches: 38, 5, 24, 51
How many runs did Zack score in his fifth match?
(b) Helen played 4 cricket matches, scoring a mean of 32 runs per match. These were her scores in her first three matches: 7, 12, 1 How many runs did Helen score in her fourth match?
(c) Amy played 3 basketball matches, scoring a mean of 14 points per match. Amy scored 6 more points in her first match than her second match. She scored 18 points in her third match.
How many points did Amy score in her first match?

The Mean

The mean age of four brothers is 12 years old.
The difference in age between the youngest and the oldest brother is 7 years.
All the brothers are different ages.

Give the possible ages of the brothers.

Level 1: Find a possible answer
Level 2: Find different possible answers
Level 3: Find all the possible answers

Extend: The mean age of the four people in a room was 14. Then, Fred walked into the room. Now the mean age of the people in the room is 16 .

How old is Fred?

The Mean

The mean age of four brothers is 12 years old.
The difference in age between the youngest and the oldest brother is 7 years.
All the brothers are different ages.

Give the possible ages of the brothers.

Level 1: Find a possible answer
Level 2: Find different possible answers
Level 3: Find all the possible answers

Extend: The mean age of the four people in a room was 14. Then, Fred walked into the room. Now the mean age of the people in the room is 16 .
How old is Fred?

I SEE MATHS RESOURCES

A range of resources for developing deep, visual mathematics can be found at www.iseemaths.com

The full range of I See Reasoning eBooks can be found at www. iseemaths.com and on these links:

I See Reasoning - Y3
I See Reasoning - Y4
I See Reasoning - Y5
| See Reasoning - Y6
The I See Problem-Solving eBooks are also available. For more information, click on these links:

I See Problem-Solving - UKS2

I See Problem-Solving - LKS2
Information about conferences and in-school training led by Gareth Metcalfe can be found at www.iseemaths.com with a range of CPD options available. There are also a wide range of online training events running throughout the year.

Social Media:

Twitter: @gareth_metcalfe
Facebook: I See Maths

