End of KS1 Expectations - Maths (with Worked Examples)

	Working Towards the Expected Standard	Example
1	Read and write numbers in numerals up to 100.	$\begin{array}{llr} \text { Can you read...? } \\ 17 & 21 & 89 \\ \text { Can you write...? } \\ 90 & 54 & 13 ? \end{array}$
2	Partition a two-digit number into tens and ones to demonstrate an understanding of place value, though they may use structured resources to support them.	
3	Add and subtract twodigit numbers and ones, and two-digit numbers and tens, where no regrouping is required, explaining their method verbally, in pictures or using apparatus (e.g. $\begin{aligned} & 23+5 ; 46+20 ; 16- \\ & 5 ; 88-30) . \end{aligned}$	$23+5=28$ "I put 23 in my head and counted on 5 fingers." $88-30$ "78, 68, 58. It's 58."

4	Recall at least four of the six number bonds to 10 and reason about associated facts (e.g. 6 $+4=10$, therefore $4+$ $6=10$ and $10-6=4$).	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\bigcirc$$\begin{aligned} & 4+6=10 \\ & 6+4=10 \\ & 10-6=4 \\ & 10-4=6 \end{aligned}$
5	Count in twos, fives and tens from 0 and use this to solve problems.	How many shoes are there altogether? Alex has 6 10ps. How much money does he have? Alice buys 9 packets of crayons.
6	Know the value of different coins.	Can you point to the 1 p? Can you point to the 20p? What is the value of this coin?
7	Name some common $2-D$ and $3-D$ shapes from a group of shapes or from pictures of the shapes and describe some of their properties (e.g. triangles, rectangles, squares, circles, cuboids, cubes, pyramids and spheres).	I know this is a triangle because it has 3 sides. \square

	Working at the Expected Standard	Example
1	Read scales in divisions of ones, twos, fives and tens.	How much water is in the beaker? How much flour is on the scales?
2	Partition any two-digit number into different combinations of tens and ones, explaining their thinking verbally, in pictures or using apparatus.	65 can be:

3	Add and subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. $48+$ 35; 72 - 17).	$\begin{aligned} & 48+20=68 \\ & 68+2=70 \\ & 70+6=76 \\ & 62-2=60 \\ & 60-5=55 \end{aligned}$		
4849505152535455565758596061626364656667686970				
4	Recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships $\begin{aligned} & (\text { e.g. If } 7+3=10 \text {, then } \\ & 17+3=20 ; \text { if } 7-3 \\ & =4 \text {, then } 17-3=14 ; \\ & \text { leading to if } 14+3= \\ & 17 \text {, then } 3+14=17 \\ & 17-14=3 \text { and } 17 \\ & -3=14) . \end{aligned}$	If we know do we know What can more sent	w that $w ?$ \bigcirc you see n nces?	$+4=10$, what else \square ? Can you write some

5	Recall multiplication and division facts for 2,5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary.	If $5 \times 6=30$, can you work out $6 \times 5 ?$
Identify $1 / 4,1 / 3$, $1 / 2, ~ 2 / 4, ~ 3 / 4, ~ o f ~ a ~$		
number or shape, and		
nnow that all parts		
must be equal parts of 10 sweets in each packet. How many		
the whole.		

7	Use different coins to make the same amount.	Can you find some different ways to make $23 p$ with just these coins?
8	Read the time on a clock to the nearest 15 minutes.	Can you read the time on the clocks?
9	Name and describe properties of 2-D and 3-D shapes, including number of sides, vertices, edges, faces and lines of symmetry.	Can you find a shape that has a line of symmetry? What is this shape called? Can you describe these shapes using some of these words...? sides, vertices, edges, faces

	Working above the Expected Standard	Example
1	Read scales* where not all numbers on the scale are given and estimate points in between.	How tall is Aneesa? How many children chose green as their favourite colour?
2	Recall and use multiplication and division facts for 2,5 and 10 and make deductions outside known multiplication facts.	If I know 10×5, how might I work out $15 \times$ 5 or 20×5 ? What is $20 \div 2$? How could you use this fact to work out $60 \div 2$? Can you use your 2 times table to work out the number of dots without counting them all? What is the quickest way you can find?

3	Use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17$ $=15+4+\cdot ;$ 'together Jack and Sam have £14. Jack has £2 more than Sam. How much money does Sam have? etc.).	Ben thinks of a number and subtracts 5 from it. "My number is now $\frac{1}{2}$ of 18 ." What number did Ben think of? Ben is 5 years older than Harry. Phil is 4 years younger than Ben. If Ben is 17, how old are the other 2 boys? $52-17=22+?+?$ Can you find different ways to solve this?
4	Solve unfamiliar word problems that involve more than one step (e.g. 'which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?').	Aima goes to the shops. She buys a cake for 45 p and a packet of crisps for 28 p. She now has 23 p. How much money did she have to begin with? I need 54 balloons for the party. I want to waste as few as possible. Should I buy packets with 10 in or packets with 5 in and how many packets will I need to buy?
5	Read the time on a clock to the nearest 5 minutes.	What time do the clocks show?

6 \begin{tabular}{l|l|l|}

\hline 6 \& | Describe similarities |
| :--- |
| and differences of 2-D |
| and 3-D shapes, using |
| their properties (e.g. |
| that two different 2-D |
| shapes both have only |
| one line of symmetry; |
| that a cube and a |
| cuboid have the same |
| number of edges, |
| faces and vertices, but |
| different dimensions). | \& | What is the same and what is different |
| :--- |
| about these shapes? Think of as many things |

\hline
\end{tabular}

