aren Guide

We are excited to share this content with you. If you are interested in finding more resources made especially for Parents, then check out these links to different areas of the Twinkl Parents hub.

iect

@twinklparents

egnancy & Ba

Ith & Wellbe

g Learni

What is this resource and how do I use it?

If your child is in year 2, use this jargon buster to find out the vocabulary they'll be using to talk about maths. You'll be able to talk to them using the language that is being used at school so that they won't become confused. It's also a great way to polish up on the meanings of terms that might have changed since you were at school!

What is the focus of this resource?

Maths Vocabulary

Supporting Your Child's Learning

Supporting Learning

Further Ideas and Suggestions

We have lots more brilliant maths resources for your year 2 child. Use our parent guide to find out more about what your child will be learning. Your child can work on addition and subtraction fact families, try a maths mosaic or have fun cracking the codes to find the joke punchlines.

Parents Blog

Parenting Wiki

Parenting Podcast

Maths Jargon Buster: Year 2

Sometimes it can be hard to support your child at home with their learning if you're not sure what terminology you should be using. We've put together a list of words and phrases that will help you to talk to your child about maths and use vocabulary they should understand.

Topic: Number and Place Value

Compare Numbers

This means looking at which number is bigger or smaller. When they **compare** numbers, your child might use the words 'greater than' or 'less than'.

Counting

You'll hear your child talking about counting frequently in year 2. They will develop their fluency to count in steps of 2, 3 and 5 from 0 and in steps of 10 from any number, both forwards and backwards.

Digit

A **digit** is any of the numbers 0 to 9. Combinations of digits can be used to represent larger numbers, for example, the digits 4 and 7 can be used to represent 47, 74, 744 and so on.

Estimate

An **estimate** is a way of making a rough calculation of an answer. For example, we might use the knowledge that 10 + 20 = 30 to estimate that 12 + 19 will be close to 30. Your child will also estimate the position of numbers on a number line, explaining why they've placed them in a certain position.

Equal To

Equal to means 'the same value as'. The symbol = means 'is equal to'.

Even

An **even** number is a whole number that has a 0, 2, 4, 6 or 8 digit in the ones column. For example, the numbers 4, 58 and 820 are all even numbers.

Fluency

Your child will develop their **fluency** in year 2, which means they will develop number sense and work on being able to quickly identify a method to solve a mathematical problem.

Hundreds

The word used to describe the place value of the first digit in a 3-digit whole number is **hundreds**. For example, in the number 284, the digit 2 represents 2 hundreds.

Multiple

A **multiple** is a number that can be divided by another number evenly without leaving a remainder. For example, 4, 6 and 8 are all multiples of 2. Multiples of 2 can be divided by 2 without leaving a remainder. Your child might be asked to count in multiples of 2, 5 and 10. This forms the basis of times tables.

Numeral

A **numeral** is a written representation of a number. For example, the number twenty-six can be written in numerals as 26. Your child will work on reading and writing numbers in numerals and words to at least 100.

Odd

An **odd** number is a number that has a 1, 3, 5, 7 or 9 digit in the ones column. For example, the numbers 1, 89 and 403 are all odd numbers.

Ones

The term used to describe the place value of the smallest unit in a whole number is **ones**. For example, in the number 46, the digit 6 is in the ones position.

Partition and Recombine

When we **partition** a number, we split it into smaller parts to make it easier to work with. Your child will learn to partition numbers to add and subtract. For example, they might partition a number by its place value to make it easier to add. 24 + 33 is easier when we partition the numbers into tens and ones, giving the calculation 20 + 30 and 4 + 3. Once we have the answers to these parts (50 and 7), we can **recombine** them, which means to put the parts back together to arrive at the answer of 57.

Pictorial Representation

A **pictorial representation** is a diagram or drawing that can support learning. For example, your child might draw more circles to a set of circles to add two amounts or they might use a simple number line to find more or less of an amount.

Place Value

Place value is the value of a digit based on where it appears within a number. For example, in the number 93, the 9 sits in the tens column, meaning it represents 9 tens, or 90.

Tens

The word used to describe the place value of the number next to the ones in a whole number is **tens**. For example, in the number 54, the digit 5 represents 5 tens.

Zero as a Placeholder

Your child will learn to use **zero as a placeholder** in numbers made up of two or more digits. This means the zero holds no value, but it changes the value of the other digits. For example, in the number 53, the 5 digit represents 5 tens and the 3 digit represents 3 ones. If we have the number 530, the zero is holding the place of the ones to tell us there are no ones. It also means we can now see that the 5 represents 5 hundreds and the 3 represents 3 tens.

Topic: Addition and Subtraction

Add

Add means to put something together to increase the quantity. The symbol for add is +. We can represent an addition like this: 5 + 6 = 11.

Addition

Altogether

Addition is the process of adding something to something else. An addition statement is: 2 + 9 = 11.

This means the total of an addition calculation. For example, if you ate 4 sweets and then ate another 2, you would have eaten 6 sweets **altogether.**

Commutative

This means that numbers in a calculation can be swapped over to get the same answer. Addition is **commutative**: we can do 4 + 5 = 9 or 5 + 4 = 9 and get the same answer. Subtraction is not commutative: we can do 9 - 2 = 7 but we can't do 2 - 9 = 7.

Difference Between

Finding the difference is the same as completing a subtraction. For example, 10 - 3 = 7 so the **difference between** 3 and 10 is 7 or the difference between 7 and 10 is 3.

Distance Between

This is similar to finding the difference between. You might ask your child to find the **distance between** two numbers on a number line, so you're actually asking them to take one number away from another. 7 - 2 = 5 so the distance between 2 and 7 is 5 and the distance between 5 and 7 is 2.

Equals

Equals means 'the same as'. With the calculation 6 + 4 = 10, the equals sign signals that whatever is on one side must be the same as what is on the other side.

Inverse

The word **inverse** means the opposite. In year 1, children will learn that addition is the inverse operation of subtraction, so we can say that 5 + 3 = 8 is the inverse of 8 - 3 = 5.

Less Than

This is used to show a relationship between two numbers – for example, we can say that 4 is **less than** 8. We can also use it to express a subtraction calculation: 5 less than 8 is 3. We can then write this as 8 - 5 = 3.

More Than

This is used to show a relationship between two numbers – for example, we can say that 9 is **more than** 7. We can also use it to express an addition calculation: 7 more than 8 is 15. We can then write this as 8 + 7 = 15.

Number Bonds

Number bonds are pairs of numbers that can be added together to make another number. For example, some number bonds to 10 are 1 + 9, 2 + 8, 3 + 7 and 4 + 6.

Number Line

A **number line** is a straight line with numbers spaced evenly along the line. Number lines are a visual way of making a series of jumps from one number to another number. They can be used to add or subtract numbers.

This is another way of saying 'add': if we **put together** 2 and 4, we add them together, making a total of 6. We can write this as 2 + 4 = 6.

Subtract

Subtract means to take something away to decrease the quantity. The symbol for add is -. We can represent a subtraction like this:

$$12 - 3 = 9.$$

Subtraction

Subtraction is the process of subtracting something from something else. An subtraction statement is:

$$13 - 6 = 7$$

Take Away

This is another way of saying 'subtract': if we **take away** 3 from 8, we subtract 3 from 8, making the total 5. We can write this as 8 - 3 = 5.

Total

The **total** is the answer when you add numbers together. If we do the calculation 3 + 5, the total is 8.

Topic: Multiplication and Division

Array

An **array** is an arrangement of objects, numbers or pictures in columns or rows.

Commutative

This means that numbers in a calculation can be swapped over to get the same answer. Multiplication is **commutative**: we can do $5 \times 2 = 10$ or 2 + 5 = 10 and get the same answer. Division is not commutative: we can do $15 \div 3 = 5$ but we can't do $3 \div 15 = 5$.

Concrete Representation

A **concrete representation** of a number is a physical item. For example, when looking at the number 5 you might use 5 counters.

Division

Division is an operation involving sharing a certain quantity into equal-sized groups. For example, if we have 10 sweets, to divide them by 5 people we would share them into 5 equal groups.

Doubling

Grouping

Doubling means to find double of an amount. This means multiplying it by 2.

Grouping in maths means to place objects into groups. For example, you might solve the problem 5×2 by creating 5 groups of 2.

Halving

Multiply

Halving means to find half of an amount. This means dividing it by 2, or sharing it between 2.

To **multiply** a number means to add groups of that number together a certain number of times. For example, 5 x 2 is the same as 5 groups of 2 or 2 groups of 5.

Pictorial Representation

Repeated addition

A **pictorial representation** of a number is a drawing or picture of an amount.

Repeated addition is another way of teaching multiplication. For example, to find 4×5 we can complete the calculation 4 + 4 + 4 + 4 + 4.

Sharing

Sharing in maths means to divide objects equally. For example, you can solve the problem 6 ÷ 2 by sharing 6 items between 2 people.

Topic: Fractions

Equal Parts

Something that is split into a fraction – a shape or a quantity – needs to be split into **equal parts**. This means each part has the same value.

Equivalent

When two numbers are **equivalent**, it means they hold the same value. The fractions 12 and 24 are equivalent as they represent the same amount. There are two quarters in one half.

Fraction

A **fraction** is a part of a whole.

Half

One part of something that had been split into 2 equal parts is a **half**.

A **non-unit fraction** is a fraction where the top number is greater than 1. For example, the fractions 3/4, 2/5 and 7/10 are all non-unit fractions.

Unit Fraction

A **unit fraction** is a fraction where the top number is 1. For example, the fractions 1/4, 1/5 and 1/10 are all unit fractions.

Topic: Measurement

Balance

This means ensuring that two measurements are the same. For example, your child might **balance** bricks on a balance scale to see how many of one brick are needed to balance a certain amount of another brick.

Capacity

Capacity is used to describe how much a container can hold. Your child will measure capacity in litres (l) and millilitres (ml).

Chronological Order

Coin Denominations

When things happen in order of time, this is called **chronological order**.

Your child will start to learn to recognise the different **coin denominations**, including 1p, 2p, 5p, 10p, 20p, 50p, £1 and £2, as well as notes. In year 2, they will work on creating combinations of coins to make the same value and finding change.

Compare

Estimate

Your child will **compare** quantities and measures and will use the signs >,< and =.

Your child might need to **estimate** a measurement, which means making an approximation based on what they know. For example, if they know how long 10cm is, they might be able to give an accurate estimate of 20cm or 5cm.

Height

Length

Height is a measurement of how tall something is. Your child will measure heights in metres (m) and centimetres (cm).

Length is a measurement of how long something is. Your child will measure lengths in metres (m) and centimetres (cm).

Mass

Mass is used to describe how heavy something is. Your child will measure mass in kilograms (kg) and grams (g).

Measuring Tools

Your child will use a range of **measuring tools**, such as balance scales, rulers, thermometers and containers to measure.

Quarter Past/ Quarter To

In year 2, your child will learn to tell the time to the nearest five minutes and they will be taught how to recognise quarter past and quarter to. **Quarter past** is when the short hand is sitting just after the hour and the long hand is on the 3; the long hand has moved a quarter of the way around the clock face. **Quarter to** is when the short hand is sitting just before the hour and the long hand is on the 9; it has a quarter of the clock face to travel until it reaches 12 again.

Standard Units

Standard units are the most commonly recognised units of measurement, such as centimetres and metres for length, grams and kilograms for mass and millilitres and litres for capacity. They will use the standard abbreviations such as:

cm = centimetres

m = metres

g = grams

kg = kilograms

ml = millilitres

l = litres

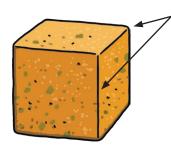
Time

Telling the **time** is an important and very tricky skill to learn. In year 2, your child will work on becoming fluent in telling the time and recording it. They'll learn the number of minutes in an hour and the number of hours in a day as well as how to compare and sequence intervals of time.

Topic: Geometry: Properties of Shapes

2D Shapes

2D shapes are flat shapes, with height and width but no depth. Children will be taught to describe a range of 2D shapes in terms of their features, for example sides and vertices.


3D Shapes

3D shapes are shapes which have 3 dimensions: height, width and depth, for example, a cuboid. Children will be taught to describe a range of 3D shapes in terms of their features, for example vertices, edges and faces.

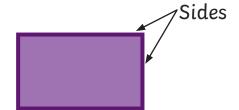
Edges

Edges are the lines on a 3D shape that separate the faces.

Edges

A **face** is a flat surface on a 3D shape.

Ploygon


A **polygon** is a 2D shape with straight sides that is closed. A polygon can have any number of sides, but they must all be straight.

Quadrilateral

A quadrilateral is a 2D shape with 4 straight sides.

Sides

On a 2D shape, the **sides** are the lines around the outside of the shape between the vertices (corners).

Symmetry

Your child will be taught to reflect a shape in a line of **symmetry**. This means they will need to imagine that the line of symmetry is a mirror line and draw the other half.

Vertices

Vertices are corners on shapes. The singular form of the word is vertex.

Topic: Geometry: Position and Direction

Anticlockwise

When you turn in a circle in the opposite direction to the movement of the hands of a clock, this is called moving **anticlockwise**.

Clockwise

Direction

When you turn in a circle in the same direction that the hands of a clock move, this is called moving **clockwise**.

Direction involves describing how something moves. Your child might use a range of vocabulary to describe direction, including left and right, forwards and backwards and they'll learn to make turns such as whole, half, quarter and three-quarter turns

Position

Position is a description of where something is in relation to another object. Your child might use a range of vocabulary to describe position, including top, middle and bottom, on top of, in front of, above, between, around, near, close and far, up and down, inside and outside.

Quarter Turn/Half Turn/Three-Quarter Turn

Your child will work on describing a new position in terms of the size of the turn it has gone through. For example, a quarter turn means the object has turned a quarter of the way around a circle, a half turn means it has turned halfway and a three-quarter turn means that it has turned so that it only has a quarter turn left to get back to its original orientation.

When describing position according to the turns a person or shape has travelled, the phrase 'right angle' can be used to describe a quarter turn. A right angle is 90°. A half turn is the same as two right angles and a three-quarter turn is the same as three right angles.

Rotation

Rotation means to move around a fixed point. When rotating a shape, it will move position but the actual shape will stay the same. Your child will learn to describe rotation using terms such as clockwise, anticlockwise, quarter turn, half turn, three-quarter turn and right angle.

Topic: Statistics

Axes

The lines that are used to create a graph are called **axes**. Your child will begin to learn about them when they create block diagrams, as they will be required to write the categories along one axis.

Block Diagram

Data

A **block diagram** is a simple chart that represents units of data with blocks, where one block represents one item.

The word **data** is used when talking about information within a graph, chart or table.

Interpret

When you **interpret** data, it means you are working out what the information in the table, chart or graph means. This might require your child to be able to answer questions about the data.

Pictogram

A **pictogram** is a chart that uses pictures to represent data in a simple way. Each picture in the pictogram represents a physical object. They are set out in a similar way as a block diagram but use pictures instead of blocks. Each picture could represent one item or more than one. For example, when using a circle to represent 2 people, half a circle can be used to represent one person.

Represent

The word **represent** means 'stands for'. For example, a circle in a pictogram might represent, or stand for, 10 people.

Survey

A **survey** is carried out to answer a specific question. In order to conduct a survey, your child might have specific categories for people to vote for or they might ask them to give their own answer. Tally charts are a useful way of organising the data in a survey.

Table

A **table** is a way of presenting data in rows or columns. Using a table means the data is easier to read than it would be in sentences.

Tally Mark

A **tally mark** is a straight line, like a number 1, which is used to represent one person or one item in a set of data. Tally marks are organised into sets of 5 – after 4 tally marks have been drawn, the fifth one is drawn across the other four, making a group of 5. This makes counting them much easier.

Tally Chart

A **tally chart** is a table used for counting and comparing the numbers of multiple classes of a data set. Tally charts are used to collect data quickly and efficiently since filling a chart with marks is much speedier than writing words. For example, if your child is collecting data by asking people about their favourite fruit, they can add tally marks next to each type of fruit. Once they've asked everyone, they can then add up the tally marks to find the total for each type of fruit.

We hope you find the information on our website and resources useful. As far as possible, the contents of this resource are reflective of current professional research. However, please be aware that every child is different and information can quickly become out of date. The information given here is intended for general guidance purposes only and may not apply to your specific situation.

