LEARNING

HELLO!

Today we are going to revise geometry - properties of shapes

Arithmetic Warm Up
 Powers and roots

1. $\sqrt{49}=\square$
2. $6^{2}=$
3. $\sqrt{81}+5 \times 4=$ \square
4. $\sqrt[3]{27}=$

Revision on properties of shapes

First we are going to revise:

〇 properties of 2D and 3D shapes
§ nets of 3D shapes

1. Name these polygons and if they are regular or irregular.

2. Which labels below are incorrect?
diameter

3. Explain the difference between an obtuse and acute angle?

Question 1

Complete

OWhat do you notice?	Here are six quadrilaterals with their mathematical names. square oblong parallelogram kite rhombus trapezium Lara chooses one of the quadrilaterals.	What do you know?
	She says, a) It has two acute angles. All four sides are the same length'. Which quadrilateral did Lara choose? Stefan chooses one of the quadrilaterals. He says, b) It has more than one obtuse angle. It has no parallel sides'. Which quadrilateral did Stefan choose?	How could you extend the question?

Question 2

Complete

$\begin{gathered} \text { Qhat do you } \\ \text { notice? } \end{gathered}$	Four large circles and five small circles fit exactly inside this rectangle.	What do you know?
Can you show your working out?	The diameter of a large circle is $\mathbf{1 7 . 5}$ centimetres. Calculate the diameter of a small circle.	How could you extend the question?

Revision: Properties of 3D shapes

Name these shapes and count the faces, edges and vertices:

4.

Faces:

Edges:

Vertices:

$\mathrm{F}:$
$\mathrm{E}:$

$F:$
$V:$

F :

E :
V :

Revision: Properties of 3D shapes

Name these shapes and count the faces, edges and vertices:

6.

8.

9.

F :	F :
E:	E:
V :	V :

\square
\square F :
$E:$

V:

Question 3

Complete

$\begin{aligned} & \text { Qhat do you } \\ & \text { notice? } \end{aligned}$	Jack has two square-based pyramids that are the same size. He sticks the square faces together to make a new 3-D shape. How many faces and how many edges does his new 3-D shape have?	What do you know?
	faces and \quad edges	How could ? you extend the question?

Revision: Match nets to common 3D solids

Draw lines to link the nets to their correct names of solids.

1

a
Cuboid
b
Triangular Prism
c
Square-based Pyramid
d
Cylinder
e
Cube

Question 4

Complete

Revision on geometry properties of shapes

Now we are going to revise:

คangles that meet at right angles, straight lines or around a pointfinding unknown angles in different types of triangles

Revision: Angles meeting at right angles, straight lines and around a point

1. Find the missing angles.
a)

b)

d)

Question 5

Complete

Revision: Interior angles of shapes

Angles in a triangle

The sum of all interior angles of a triangle $=180^{\circ}$

So angle $x=180^{\circ}-\left(117^{\circ}+\right.$

$$
X=\square
$$

Question 6

Complete

$\begin{gathered} \text { Qhat do you } \\ \text { notice? } \end{gathered}$	Here is a rectangle.	What do you know?
Can you show your working out?	Calculate the size of angles \boldsymbol{a} and \boldsymbol{b}.	How could you extend the question?
	$\begin{array}{r} a= \\ b= \end{array}$	

Let's review:

- Know the names and properties of 2D and 3D shapes

- Can work with nets of 3D shapes

Can calculate missing angles that meet at a right angle, on a straight line or around a point

Can find missing angles using alternate angles and angles in triangles

Draw a circle around the smiley face to show how you feel about what we've just been doing.

Is there something you would like to go over?

