

KS1 maths curriculum plan

Our curriculum

Knowledge & vocabulary rich

Lessons and units are knowledge and vocabulary rich so that pupils build on what they already know to develop powerful knowledge.

Sequenced & coherent

Knowledge is sequenced and mapped in a coherent format so that pupils make meaningful connections.

Flexible

Our flexible curriculum enables schools to tailor our content to their curriculum and context.

Accessible

Creating an accessible curriculum that addresses the needs of all pupils is achieved to accessibility guidelines and requirements.

Diverse

We prioritise creating a diverse curriculum by committing to diversity in teaching and teachers, and the language, texts and media we use, so all pupils feel positively represented.

Evidence-informed

Our curriculum is evidence-informed through rigorous application of best practice and the science of learning.

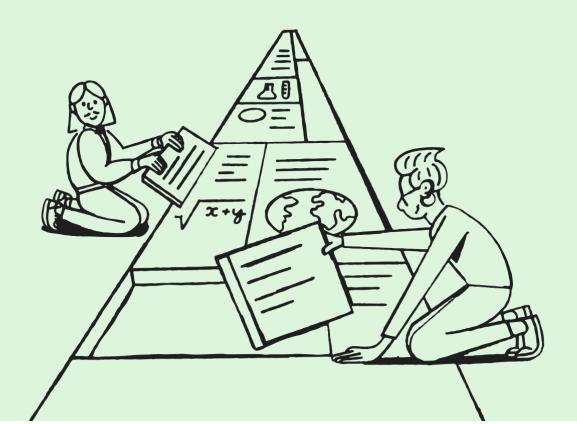
Threads

What are threads?

Threads are one way that we provide coherence across the curriculum. Threads highlight where and how units link together, with each specific thread containing knowledge and ideas to help frame units. Providing these threads means that we are able to support teachers' understanding of unit coherence, giving them an increasing ability to deliver great lessons to pupils.

How to use threads?

- 1. Familiarise yourself with all of the threads relating to the subject
- 2. Identify the unit you will be delivering
- 3. Review the threads associated with the unit
- 4. Audit where pupils have and will learn about these threads in your existing curriculum sequence.
- 5. Ensure you understand how the thread relating to your new unit has been framed in prior and future units
- 6. Review how the thread works within the unit you will be delivering
- 7. Teach and iterate your framing of the thread within the unit and across your curriculum sequence


Tools for using threads

Maths curriculum overview

Curriculum explainer

Our curriculum provides adaptable, coherently sequenced units to allow pupils to develop a deep, sustained understanding of mathematics at Key Stages 1 and 2. Evidence-informed approaches including variation and the development of core sets of models and representations build pupil knowledge and conceptual understanding. Lessons are designed to be flexible, accessible and to acknowledge the diversity in our schools. Central to the design of our curriculum is coherence in the development of key threads in mathematics. These threads reflect the structure of the National Curriculum, allowing teachers to track the development of key knowledge and skills. Reasoning and problem-solving are integral. The curriculum promotes the use of vocabulary allowing pupils to articulate their thinking and strengthen both their procedural knowledge and conceptual understanding. Use of talk allows pupils to explore mathematical connections and use key vocabulary accurately when presenting their reasoning.

Subject principles

Pairing procedural knowledge with conceptual understanding.

Aligning with the Concrete Pictorial Abstract approach to mathematics teaching and learning.

Use an agreed set of models and representations which bridge mathematical concepts.

Use of variation theory in practice tasks and modelling.

Our curriculum partner

Mathematics in Education and Industry (MEI) is an established charity and curriculum development body. Their primary aims are to raise the quality of maths education and promote the relevance of maths education to everyone. MEI are highly respected and are well connected with other quality-assured organisations, including being a key partner in the NCETM, and are well known in schools for their excellent training and support programmes.

Year 1 units

View interactive sequence online [2]

1 Counting, recognising and comparing numbers 0 - 10	2 Counting to and from 20	3 Counting in tens - decade numbers
4 Pattern in counting from 20 to 100	5 Comparing quantities - part whole relationships	6 Composition of numbers 0 to 5
Recognise, compose, decompose and manipulate 2D and 3D shapes	8 Composition of numbers 6 to 10	9 Additive structures: addition
10 Additive structures: addition and subtraction	11 Addition and subtraction facts within 10	12 Composition of numbers 11 to 19
13 Numbers 0 to 20 in different contexts	14 Unitising and coin recognition – counting in 2s, 5s and 10s	15 Unitising and coin recognition - value of a set of coins
16 Unitising and coin recognition - solving problems involving money	17 Position and direction including fractions of turns	18 Time - sequencing events and telling the time to the hour and half hour

1. Year 1 Units

1. Counting, recognising and comparing numbers 0 - 10

Lessons in unit

- 1. Counting forwards and backwards within 10
- 2. Counting objects within ten
- 3. Counting different groups
- 4. Representing counting songs
- 5. Anything can be counted
- 6. Subitising numbers to five
- 7. Conservation
- 8. Using numerals
- 9. Introducing zero
- 10. Ordinal numbers
- 11. Ordering numbers to 10
- 12. More than and fewer than
- 13. One more with manipulatives and counting
- 14. One less with manipulatives and counting
- 15. Finding the missing numbers

Go to unit resources [2]

2. Counting to and from 20

Lessons in unit

- 1. Counting to and from 20
- 2. Counting on
- 3. Counting back from 20
- 4. Counting forward to 20 and back from 20
- 5. Comparing numbers to 20
- 6. Ordering numbers 11-20 practically
- 7. Comparing and ordering numbers 0-20 practically
- 8. Finding one more and one less using representations
- 9. Finding one more and one less with manipulatives and images
- 10. Finding the missing number from 0 to 20

Go to unit resources

3. Counting in tens - decade numbers

Lessons in unit

- 1. Counting forwards and backwards in 10s to 50
- 2. Counting forwards and backwards in 10s to 100
- 3. Composition of decade numbers to 100: making groups of 10
- 4. Count groups of 10 in decade numbers
- 5. Order and compare decade numbers on number tracks

Go to unit resources

4. Pattern in counting from 20 to 100

Lessons in unit

- 1. Counting patterns within a decade
- 2. Crossing the tens boundary counting forwards
- 3. Crossing the tens boundary counting backwards
- 4. Crossing the tens boundary counting forwards and backwards
- 5. Find missing numbers between 20 and 100

Go to unit resources

5. Comparing quantities - part whole relationships

- 1. Explain that items can be compared using length and height
- 2. Explain that items can be compared using weight and mass
- 3. Explain that items can be compared using capacity
- 4. Count a set of objects
- 5. Solve problems by comparing sets of objects
- 6. Use equality and inequality symbols to compare sets of objects
- 7. Use equality and inequality symbols to compare the relative size of two numbers
- 8. Explain what a whole is
- 9. Explain that a whole can be split into parts
- 10. Explain that a whole can represent a group of objects
- 11. Identify a part of a whole group
- 12. Explain what a part-part-whole model is

- 13. Use a part-whole model to represent a whole partitioned into two parts
- 14. Use a part-whole model to represent a whole partitioned into more than two parts
- 15. Solve problems using a part-whole model to represent a whole partitioned into more than two parts

6. Composition of numbers 0 to 5

Lessons in unit

- 1. Explain that numbers can represent how many objects there are in a set
- 2. Ordinal numbers show the position of an object in relation to another
- 3. Partition numbers one to five in different ways
- 4. Partition the numbers one to five in a systematic way
- 5. Find a missing part when one part and the whole is known
- 6. Solve problems finding a missing part when one part and the whole is known
- 7. Show one more and one less than a number using representations
- 8. Show one more and one less than a number using representations and describe this accurately
- 9. Use a bar model to represent a whole partitioned into two parts
- 10. Solve problems using a bar model to represent a whole partitioned into two parts

Go to unit resources

7. Recognise, compose, decompose and manipulate 2D and **3D** shapes

- 1. Composing pattern block images
- 2. Copy, extend and describe repeating patterns
- 3. Radiating patterns
- 4. Compose tangram images
- 5. Tetrominoes and pentominoes
- 6. Examine ways that cubes can be composed into different arrangements
- 7. Explore, recognise and compare three different 3D shapes
- 8. Explore, recognise and compare three more 3D shapes
- 9. Identify 2D shapes within 3D shapes
- 10. Recognise, describe and sort 3D shapes

- 11. Explore and recognise 2D shapes
- 12. Explore, discuss and compare 2D shapes
- 13. Explore, discuss and identify shapes that are and are not circles
- 14. Explore, discuss and identify shapes that are and are not triangles
- 15. Explore, discuss and identify shapes that are and are not rectangles

8. Composition of numbers 6 to 10

Lessons in unit

- 1. Count a set of objects and match the spoken number to the written numeral and number name
- 2. Represent the numbers 6 to 10 using a five and a bit structure
- 3. Compare two numbers and say which is greater than or less than the other
- 4. Identify the whole and parts of the numbers 6 to 10 using the five and a bit structure
- 5. Explore the numbers 6 to 10 using the parts and wholes on a number line
- 6. Explain where 6, 7, 8 and 9 lie on a number line
- 7. Estimate where 6, 7, 8 and 9 lie on an unmarked number line
- 8. Order and sort numbers into odd and even sets
- 9. Skip count in odds and evens
- 10. Explain what odd and even numbers are and the difference between them
- 11. Explain how even and odd numbers can be partitioned
- 12. Partition the numbers 6 and 7 in different ways
- 13. Partition the numbers 8 and 9 in different ways
- 14. Partition the numbers 6 to 10 in different ways
- 15. Identify a missing part when a whole is partitioned into two parts

Go to unit resources

9. Additive structures: addition

- 1. Combine addends using the addition symbol
- 2. Understand that addends can be represented in any order
- 3. Understand the use of the equals sign in equations
- 4. Understanding part-part-whole relationships
- 5. Add parts to find the value of the whole and write the equation
- 6. Find the missing addend in an equation

- 7. Partition a whole into two parts and express as a subtraction equation
- 8. Using bar models to subtract
- 9. Understand the relationship between addition and subtraction
- 10. Understand addition as increasing a quantity

10. Additive structures: addition and subtraction

Lessons in unit

- 1. Interpret and represent addition stories
- 2. Understand subtraction as decreasing an amount
- 3. Interpret and represent subtraction stories
- 4. Furthering understanding of subtraction as decreasing an amount
- 5. Create addition and subtraction stories
- 6. Find the missing part of an addition story
- 7. Find the missing part in addition and subtraction stories
- 8. Find the missing part of a subtraction story
- 9. Know that addition and subtraction are inverse operations
- 10. Represent the inverse relationship between addition and subtraction

Go to unit resources

11. Addition and subtraction facts within 10

- 1. Explain that addition is commutative
- 2. Find pairs of numbers that sum to 10
- 3. Use number pairs to 10 in subtraction contexts
- 4. Add and subtract one from any number
- 5. Find the difference between consecutive numbers
- 6. Add and subtract two from even numbers within 10
- 7. Add and subtract two from odd numbers within 10
- 8. Explain the difference between consecutive even numbers
- 9. Explain the difference between consecutive odd numbers
- 10. Addition and subtraction involving zero
- 11. Double numbers and explain what doubling means

- 12. Halve numbers and explain what halving means
- 13. Use knowledge of doubles to calculate near-doubles
- 14. Solve problems to add 5 and 3 and 6 and 3
- 15. Addition and subtraction facts within 10

12. Composition of numbers 11 to 19

Lessons in unit

- 1. Explain that the digits in the numbers 11 to 19 express quantity
- 2. Explain that the digits in the numbers 11 to 19 express position on a number line
- 3. Identify the quantity shown in a representation of numbers 11 to 19
- 4. Use knowledge of 10 and a bit to solve problems
- 5. Solve subtraction problems using knowledge of 10 and a bit
- 6. Explore odd and even numbers within 20
- 7. Double the numbers 6 to 9 and halve the result explaining what doubling and halving is
- 8. Use knowledge of addition facts within 10 to add within 20
- 9. Use knowledge of subtraction facts within 10 to subtract within 20
- 10. Use knowledge of addition and subtraction facts within 10 to add and subtract within 20

Go to unit resources

13. Numbers 0 to 20 in different contexts

Lessons in unit

- 1. Comparing lengths
- 2. Measure length using objects
- 3. Measure length using objects and record results in a table
- 4. Measure length using centimetre cubes
- 5. Measure items using centimetre cubes and record results in a table
- 6. Measure length using a ruler
- 7. Solve problems by measuring different lengths in cm using a ruler
- 8. Estimate length in cm
- 9. Estimate and measure length and record results in a table
- 10. Solve addition and subtraction problems involving length

Go to unit resources

14. Unitising and coin recognition - counting in 2s, 5s and 10s

Lessons in unit

- 1. Skip count in twos forwards and backwards
- 2. Count efficiently in groups of two
- 3. Count efficiently in groups of ten
- 4. Skip count in fives forwards and backwards
- 5. Count efficiently in groups of 5
- 6. Count efficiently in groups of two, five and ten
- 7. Recognise and explain the value of 1p in pence
- 8. Recognise and explain the value of 2p coins in pence
- 9. Recognise and explain the value of 5p in pence
- 10. Recognise and explain the value of 10p in pence.

Go to unit resources

15. Unitising and coin recognition - value of a set of coins

Lessons in unit

- 1. Calculate the total value of a set of 2 p coins
- 2. Find how many 2 p coins are needed to make a given value
- 3. Calculate the total value of the coins in a set of 10p coins
- 4. Find how many ten pence coins are needed to make a given amount
- 5. Calculate the total value of the coins in a set of 5 p coins
- 6. Find how many five pence coins are needed to make a given amount
- 7. Compare sets of 2 p, 5 p, and 10 p coins
- 8. Find and make amounts within 10p
- 9. Find and make amounts within 20 p
- 10. Calculate amounts up to 20 p

Go to unit resources

16. Unitising and coin recognition - solving problems involving money

Lessons in unit

- 1. Solving problems with money in a real-life context
- 2. Work out how many coins are needed to make a value of 10p and find different ways
- 3. Work out how many coins are needed to make a total value of 20p and find different
- 4. Use coins to find totals of small amounts of money
- 5. Solve problems using coins to find totals of small amounts of money

Unit resources coming soon

17. Position and direction including fractions of turns

Lessons in unit

- 1. Using directional language
- 2. Using positional and proportional language
- 3. Understanding turns
- 4. Giving directions and describing turns
- 5. Follow and give directions

Go to unit resources

18. Time - sequencing events and telling the time to the hou and half hour

Lessons in unit

- 1. Sequence events in the school day in chronological
- 2. Sequence everyday events in chronological order
- 3. Use language relating to days of the week
- 4. Sequence events across a week in chronological order
- 5. Use language relating to months of the year
- 6. Use language relating to days, weeks, months and years
- 7. Draw and label a clock face talking about the hours
- 8. Tell the time to the hour using the hour hand
- 9. Tell the time to the half hour using the hour hand
- 10. Tell the time to the hour and half hour using the hour and minute hands

Go to unit resources

Year 2 units

View interactive sequence online

1 Composition of multiples of 10	2 Counting and representing the numbers 20 to 99	Comparing, ordering and partitioning 2-digit numbers
4 Secure fluency of addition and subtraction facts within 10	5 Calculating within 20	Adding and subtracting ones and tens to and from 2-digit numbers
7 Grouping objects in different ways and relating to multiplication	Representing counting in 2s and 10s as the 2 and 10 times tables	Representing counting in 5s as the 5 times table and link to the 10 times tables
10 Multiplying by 2, doubling and halving (factors and products)	11 Introduction to division structures	12 Shape: discuss and compare 2D and 3D shapes
13 Addition and subtraction of two 2-digit numbers	14 Money: recognise coins and use £ and p symbols	Fractions: identify equal parts and be familiar with halves, thirds and quarters

16 Time: write and tell the time to five minutes	17 Position and direction	18 Doubling, halving, quotative and partitive division
19 Sense of measure - capacity, volume and mass		

1. Composition of multiples of 10

Lessons in unit

- 1. Explain that one ten is equivalent to ten ones
- 2. Represent multiples of ten using their numerals
- 3. Represent multiples of ten using their numerals and names
- 4. Represent multiples of ten in an expression or an equation
- 5. Estimate the position of multiples of ten on a 0 100 number line
- 6. Explain what happens when you add and subtract ten to a multiple of ten
- 7. Use knowledge of facts and unitising to add and subtract multiples of ten
- 8. Add and subtract multiples of ten
- 9. Solve problems involving multiples of ten
- 10. Solve problems involving multiples of ten in a range of contexts

Go to unit resources

2. Counting and representing the numbers 20 to 99

Lessons in unit

- 1. Review and explore the counting sequence for counting to 100 and beyond
- 2. Count a large group of objects by counting groups of tens and the extra ones
- 3. Count a large group of objects by using knowledge of unitising by counting tens and
- 4. Represent a number from 20 99 in different ways
- 5. Explain and mark the position of numbers 20 99 on a number line including the context of measure

Unit resources coming soon

3. Comparing, ordering and partitioning 2-digit numbers

Lessons in unit

- 1. Compare two 2-digit numbers
- 2. Partition 2-digit numbers into tens and ones using place value resources
- 3. Partition 2-digit numbers into tens and ones and record in different ways
- 4. Add two 2-digit numbers by partitioning into tens and ones
- 5. Solve problems by adding two 2-digit numbers by partitioning into tens and ones

<u>Unit resources coming soon</u>

4. Secure fluency of addition and subtraction facts within 10

Lessons in unit

- 1. Represent addition and subtraction facts within 10
- 2. Recall one and two more or less than numbers to ten
- 3. Recall doubles within 10
- 4. Use near doubles within 10
- 5. Use known addition and subtraction facts within 10 to solve problems

Go to unit resources

5. Calculating within 20

- 1. Add three addends
- 2. Use a 'First, then, then, now' story to add three addends
- 3. Explain that the addends can be added in any order
- 4. Add three addends efficiently
- 5. Add three addends efficiently by finding two addends that total 10
- 6. Add two numbers that bridge through 10
- 7. Subtract two numbers that bridge through 10
- 8. Compare numbers and describe how many more or less there are in each set
- 9. Calculate the difference
- 10. Calculate the difference in different contexts
- 11. Explain what the difference is between consecutive numbers

- 12. Calculate the difference when information is presented in a pictogram
- 13. Calculate the difference when information is presented in a bar chart
- 14. Use knowledge of subtraction to solve problems in a range of contexts
- 15. Use knowledge of addition and subtraction to solve problems in a range of contexts

Unit resources coming soon

6. Adding and subtracting ones and tens to and from 2-digit numbers

Lessons in unit

- 1. Add and subtract one to and from a 2-digit number
- 2. Add and subtract one to and from a 2-digit number that crosses a tens boundary
- 3. Use number facts to add a 1-digit number to a 2-digit number
- 4. Use number facts to subtract a 1-digit number from a 2-digit number
- 5. Use number bonds to 10 to add and subtract a 1-digit to and from a 2-digit number
- 6. Use 'make 10' to add and subtract a 1-digit number to and from a 2-digit number
- 7. Find ten more or less than a 2-digit number
- 8. Add and subtract ten to and from a 2-digit number and explain the patterns
- 9. Use number facts to add or subtract a multiple of ten to and from a 2-digit number
- 10. Use knowledge of adding and subtracting multiples of ten to solve problems

Unit resources coming soon

7. Grouping objects in different ways and relating to multiplication

- 1. Explain that objects can be grouped in different ways
- 2. Describe how objects have been grouped
- 3. Represent equal groups as repeated addition
- 4. Represent equal groups as repeated addition and multiplication
- 5. Represent equal groups as multiplication
- 6. Explain and represent multiplication when a group contains zero or one items
- 7. Identify and explain each part of a multiplication equation
- 8. Use knowledge of multiplication to calcuate the product
- 9. Use knowledge of multiplication to solve problems
- 10. Use knowledge of multiplication to solve problems in a range of contexts

8. Representing counting in 2s and 10s as the 2 and 10 times tables

Lessons in unit

- 1. Represent the 2 times table in different ways
- 2. Use knowledge of the 2 times table to solve problems
- 3. Explain the relationship between adjacent multiples of 2
- 4. Explain that factor pairs can be written in any order
- 5. Represent counting in tens as the 10 times table
- 6. Represent the 10 times table in different ways
- 7. Explain the relationship between adjacent multiples of 10
- 8. Represent counting in fives as the 5 times table
- 9. Represent the 5 times table in different ways
- 10. Explain the relationship between adjacent multiples of 5

Unit resources coming soon

9. Representing counting in 5s as the 5 times table and link to the 10 times tables

Lessons in unit

- 1. Explain how groups of five and ten are related
- 2. Explain the relationship between multiples of five and ten
- 3. Use knowledge of the relationships between the 5 and 10 times tables to solve problems
- 4. Explain how a factor of zero or one affect the product
- 5. Represent multiplication equations in different ways
- 6. Use knowledge of the 2, 5 and 10 times tables to solve problems
- 7. Use knowledge of the 2, 5 and 10 times tables to solve problems in a range of contexts
- 8. Explain what each factor represents in a multiplication story
- 9. Explain what each factor represents in a multiplication story when one of the factors is one
- 10. Explain how a multiplication equation with 2 as a factor is related to doubling

Unit resources coming soon

10. Multiplying by 2, doubling and halving (factors and products)

Lessons in unit

- 1. Double 2-digit numbers and record as multiplications where one of the factors is 2
- 2. Explain how doubling and halving are related
- 3. Explain the relationship between factors and products
- 4. Halve 2-digit numbers
- 5. Use knowledge of doubling, halving and the 2 times table to solve problems

<u>Unit resources coming soon</u>

11. Introduction to division structures

Lessons in unit

- 1. Explain that objects can be grouped equally
- 2. Identify and explain when objects cannot be grouped equally
- 3. Explain the relationship between division expressions and division stories
- 4. Calculate the number of equal groups in a division story
- 5. Use knowledge of skip counting and division to solve problems relating to measure
- 6. Skip count using the divisor to find the quotient
- 7. Explain that objects can be shared equally
- 8. Use skip counting to solve a sharing problem
- 9. Skip count using the divisor to find the quotient in a sharing problem
- 10. Solve a variety of division problems, explaining understanding

<u>Unit resources coming soon</u>

12. Shape: discuss and compare 2D and 3D shapes

- 1. Recognise and sort polygons
- 2. Describe and name polygons, including triangles and quadrilaterals
- 3. Know that polygons can be sorted and named according to the number of sides and vertices
- 4. Discuss and compare the shape and size of polygons by direct comparison
- 5. Discuss and compare the vertices of polygons by direct comparison

- 6. Investigate how polygons can be joined and folded to form 3D shapes
- 7. Describe 3D shapes according to their properties
- 8. Find ways to sort 3D shapes
- 9. Discuss and compare the shape and size of 3D shapes
- 10. Discuss and compare the properties of 3D shapes

13. Addition and subtraction of two 2-digit numbers

Lessons in unit

- 1. Explain different strategies used to add
- 2. Add multiples of 10 and 1-digit numbers
- 3. Add a 2-digit number to a 2-digit number when not crossing ten
- 4. Add a 2-digit number to a 2-digit number when not crossing ten in different contexts
- 5. Add a 2-digit number to a 2-digit number when crossing ten
- 6. Add a 2-digit number to a 2-digit number when crossing ten in different contexts
- 7. Explain different strategies used to subtract
- 8. Subtract a 2-digit number from a 2-digit number
- 9. Partition the subtrahend to help with subtraction
- 10. Subtract a 2-digit number from a 2-digit number not crossing ten
- 11. Subtract a 2-digit number from a 2-digit number not crossing ten I different contexts
- 12. Subtract a 2-digit number from a 2-digit number crossing ten
- 13. Subtract a 2-digit number from a 2-digit number crossing ten in different contexts
- 14. Use knowledge of 2-digit number to subtract efficiently
- 15. Add and subtract efficiently in a range of contexts

Unit resources coming soon

14. Money: recognise coins and use £ and p symbols

Lessons in unit

- 1. Secure recognising coin values
- 2. Recognise and use the symbols for pounds £ and pence p
- 3. Find different combinations of coins that equal the same amount of money
- 4. Solve problems involving adding and subtracting money
- 5. Solve problems involving adding and subtracting money and giving change

<u>Unit resources coming soon</u>

15. Fractions: identify equal parts and be familiar with halves, thirds and quarters

Lessons in unit

- 1. Identify if something has been split into equal or unequal parts
- 2. Name the fraction 'one half' in relation to a fraction of a length, shape or set of objects
- 3. Name the fraction 'one quarter' in relation to a fraction of a length, shape or set of objects
- 4. Name the fraction 'one third' in relation to a fraction of a length, shape or set of objects
- 5. Read and write the fraction notation 1/2,1/3, 1/4 and relate this to a fractions of objects and sets
- 6. Find half of a number
- 7. Relate finding half of a number to halving
- 8. Find 1/3 or 1/4 of a number
- 9. Find 1/4 and 3/4 of an object, shape, set of objects, length or quantity
- 10. Recognise the equivalence of 2/4 and 1/2

Unit resources coming soon

16. Time: write and tell the time to five minutes

Lessons in unit

- 1. Know the number of minutes in an hour and hours in a day
- 2. Tell and write the time to five minutes past on a clock face
- 3. Tell and write the time to five minutes past and to on a clock face
- 4. Tell and write guarter past and guarter to on a clock face
- 5. Compare and sequence intervals of time

Go to unit resources

17. Position and direction

- 1. Order and arrange objects in patterns and sequences and explain the patterns
- 2. Use mathematical vocabulary to describe position, direction and movement
- 3. Use mathematical vocabulary to describe rotation as a turn

- 4. Describe turns as a quarter, half, three quarter or full turn
- 5. Solve problems involving position, direction and rotation

Unit resources coming soon

18. Doubling, halving, quotative and partitive division

Lessons in unit

- 1. Identify the patterns and relationships between the 5 and 10 times tables
- 2. Identify and explain relationships between the 5 and 10 times tables
- 3. Use knowledge of the 5 and 10 times tables to solve problems
- 4. Use knowledge of the 5 and 10 times tables to solve problems in a range of contexts
- 5. Explain how times table facts can help to find the quotient (10 times table)
- 6. Explain how times table facts can help to find the quotient (5 times table)
- 7. Explain how times table facts can help to find the quotient (2 times table)
- 8. Explain how a division equation with 2 as a divisor is related to halving
- 9. Explain each part of a division equation and know how they can be interchanged
- 10. Use knowledge of divisibility rules when the divisor is 2 to solve problems
- 11. Use knowledge of divisibility rules when the divisor is 10 to solve problems
- 12. Use knowledge of divisibility rules when the divisor is 5 to solve problems
- 13. Explain how a dividend of zero affects the quotient
- 14. Explain how the quotient is affected when the divisor is equal to the dividend
- 15. Explain how a divisor of one affects the quotient

<u>Unit resources coming soon</u>

19. Sense of measure - capacity, volume and mass

Lessons in unit

- 1. Explain why standard units of measure are needed
- 2. Length can be measured in any direction to give height, length and distance
- 3. Length can be measured in metres and centimetres
- 4. Use counting and place value to read measure scales in metres and centimetres
- 5. Compare and order lengths
- 6. Mass can be measured in grams and kilograms
- 7. Compare and order measurements of mass
- 8. Volume and capacity can be measured in litres and millilitres
- 9. Compare and order measurements of volume and capacity
- 10. Read scales in different contexts including temperature

Unit resources coming soon

© Oak National Academy 2024.

Produced in partnership with MEI.

Licensed on the Open Government Licence v3.0, except where otherwise stated. See Oak terms and conditions.

