## Brereton CE Primary School



Maths in Year 5

## Maths at Brereton

## How do we teach Maths at Brereton?



At Brereton, we use Power Maths as a basis of our maths lesson. This is an exciting class mastery approach, which has been recommended by the DfE, that works for every child. It is based upon the concrete, pictorial and abstract approach.

Every lesson is divided into sections that involve plenty of discovery, sharing, collaboration, practice and reflection. Children are encouraged to solve problems each day through the use of concrete resources, pictorial representations and abstract thinking.

At the heart of this programme is the idea that all children can achieve and be successful mathematicians with the right growth mindset.

## What does a Power Maths



Power Up: Each lesson begins with a Power Up task. This is often something the children have been previously taught and encourages group or partner work. This involves lots of discussion to get children thinking mathematically.

Discover: This part of the lesson introduces the learning objective to the class. The children are presented with a problem they must try to solve using problem solving and reasoning.

Share: This is an opportunity to look at how the class have decided to tackle the Discover problem. As a class, we will look at different methods that have been used before looking at the most efficient method. At this point, it is encouraged to have learning aids out. This might include place value counters or Base 10. This is so that children can understand the concept behind the teaching.

Think together: This part of the lesson allows children to practice the methods they have been shown during the Share part of the lesson. It follows a structure of I do, We do, You do. The teacher models the method before the children try the method with a partner and on their own.

Independent work: The main part of the lesson consists of independent practice. The questions in the Power Maths workbook allow children the opportunity to work through problems related to the learning objective that become progressively harder.

Reflect
When I odd 4 -digit numbers. I need to remember to:

- 1. 
- 2. 
- 3. 
- 




Reflect: Each lesson ends with a reflection. This is an opportunity for children to explain what they have learnt during the lesson.

## Addition

| Column addition with whole numbers | Use place value equipment to represent additions. <br> Add a row of counters onto the place value grid to show 15,735 + 4,012. | Represent additions, using place value equipment on a place value grid alongside written methods. <br> I need to exchange 10 tens for a 100. | Use column addition, including exchanges. |
| :---: | :---: | :---: | :---: |
| Representing additions |  | Bar models represent addition of two or more numbers in the context of problem solving. | Use approximation to check whether answers are reasonable. <br> I will use $23,000+8,000$ to check. |


| Adding tenths | Link measure with addition of decimals. <br> Two lengths of fencing are 0.6 m and 0-2 m. <br> How long are they when added together? <br> 0.6 m <br> 0.2 m <br> t\|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t | Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ <br> 6 tenths +2 tenths $=8$ tenths | Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Adding decimals using column addition | Use place value equipment to represent additions. <br> Show $0.23+0.45$ using place value counters. | Use place value equipment on a place value grid to represent additions. <br> Represent exchange where necessary. $$ <br> Include examples where the numbers of decimal places are different. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 00 \\ +1 \cdot 2 \\ \hline 1 \cdot 2 \\ \hline 6 \cdot 2 \\ \hline \end{array}$ | Add using a column method, ensuring that children understand the link with place value. $$ <br> Include exchange where required, alongside an understanding of place value. <br> Include additions where the numbers of decimal places are different. $\begin{aligned} & 3.4+0.65 \equiv ? \\ & \begin{array}{l} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \quad 0 \\ +0 \cdot 65 \\ \hline \end{array} \end{aligned}$ |

## Subtraction

| Column subtraction with whole numbers | Use place value equipment to understand where exchanges are required. $2,250-1,070$ | Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$$\begin{array}{rrrr} \text { Th Th } & \text { H } & \text { T } & 0 \\ \hline 1 & 5 & 7 & 3 \\ 5 \\ - & 2 & 5 & 8 \\ \hline \end{array}$Th Th $H$ T 0  <br> 1 5 7 3 5 <br> - 2 5 8 2 <br>    5 3$\begin{array}{r} \text { TH Th } \end{array} \mathrm{H} \text { T } \begin{aligned} & 0 \\ & \hline 1 \\ & \hline \end{aligned}$ | Use column subtraction methods with exchange where required. $62,097-18,534=43,563$ |
| :---: | :---: | :---: | :---: |
| Checking strategies and representing subtractions |  | Bar models represent subtractions in problem contexts, including find the difference'. | Children can explain the mistake made when the columns have not been ordered correctly. <br> Use approximation to check calculations. <br> I calculated $18,000+4,000$ mentally to check my subtraction. |


| Choosing efficient methods |  |  |  |  | To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995 \equiv \underline{\underline{\underline{2}}}$ <br> Use addition to check subtractions. I ca/culated $7,546-2,355=5,191$. I will check using the inverse. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Subtracting decimals | Explore complements to a whole number by working in the context of length. $\begin{aligned} & 0.49 \mathrm{~m} \\ & 1-0.49 \mathrm{~m}=\square \mathrm{m} \\ & 1-\square \end{aligned}$ | Use a plac stages of c exchanges <br> $5.74-2.25$ <br> Exchange I tenth <br> Now subtroct the <br> Now subtroct the | e value grid column subtra where requi $5 \equiv ?$ <br> th for 10 hundredth <br> he 5 hundredths. <br> he 2 tenths, then the <br> - $8 \varnothing$ | to represent the action, including ired. | Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75 \equiv \underline{\underline{\underline{2}}}$ $\left.\begin{array}{rccc}0 & \text { Tth } & \text { Hth } & \text { Thth } \\ \hline 3 & 9 & 2 & 1 \\ -3 & \cdot & 7 & 5\end{array}\right) 0$ |

## Multiplication



| Multiplying 2digit numbers by 2-digit numbers | Partition one number into 10 s and 1 s , then add the parts. $23 \times 15 \equiv \underline{\underline{\underline{2}}}$     <br> 4040 <br> $3 \times 15=45$ <br> There ore 345 bottles of milk in totol. $23 \times 15=345$ | Use 28 $28 \times$ | area model $\equiv$ ? $\qquad$ <br> $20 \times 10=200 \mathrm{~m}^{2}$ <br> $20 \times 5=100 \mathrm{~m}^{2}$ $=420$ | add the parts. | Use column multiplication, ensuring understanding of place value at each stage. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplying up to 4-digits by 2-digits |  | Use <br> 10 $\square$ <br> 143 <br> Ther | area model <br> 1.76 <br> 1.75 boxes of cereal $2=1,716$ | add the parts.$\square$Th H T 0 <br> 1 0 0 0 <br>  4 0 0 <br>  2 0 0 <br>   8 0 <br>   3 0 <br>    6 <br> 1 7 1 6 | Use column multiplication, ensuring understanding of place value at each stage. $\begin{array}{rrrl} 1 & 4 & 3 & \\ \times & 1 & 2 \\ \hline & & 8 & \\ \hline & 4 & 3 & 143 \times 2 \\ 1 & 7 & 1 & 63 \times 10 \\ \hline & 143 \times 12 \end{array}$ <br> Progress to include examples that require multiple exchanges as understanding, confidence and fluency build. |

## Multiplication Continued



## Division

| Understanding factors and prime numbers | Use equipment to explore the factors of a given number. <br>  $\begin{aligned} & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ <br> 8 and 3 are factors of 24 because they divide 24 exactly. <br> 5 is not a factor of 24 because there is a remainder. | Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ <br> 1 and 13 are the only factors of 13. 13 is a prime number. | Understand how to recognise prime and composite numbers. <br> I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. <br> I know that 33 is not a prime number as it can be divided by 1,3,11 and 33 . <br> I know that 1 is not a prime number, as it has only 1 factor. |
| :---: | :---: | :---: | :---: |
| Understanding inverse operations and the link with multiplication, grouping and sharing | Use equipment to group and share and to explore the calculations that are present. <br> I have 28 counters. <br> I made 7 groups of 4 . There are 28 in total. <br> I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. <br> I have 28 in total. I made groups of 4 . There are 7 equal groups. | Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$ | Represent the different multiplicative relationships to solve problems requiring inverse operations. $12+3=\square$ <br> $12+\square$ $\square$ $=3$ $\square$ $\times 3=12$ $\square$ $\square+3=12$ <br> Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div 7=2 \\ & 22 \div 2=2 \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$ |



| Dividing up to four digits by a single digit using short division | Explore grouping using place value equipment. $268 \div 2 \equiv ?$ <br> There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$ | Use place value equipment on a place value grid alongside short division. <br> The model uses grouping. <br> A sharing model can also be used, although the model would need adapting. <br> Lay out the problem as a short division. <br> There is 1 group of 4 in 4 tens. <br> There are 2 groups of 4 in 8 ones. <br> Work with divisions that require exchange. | Use short division for up to 4-digit numbers divided by a single digit. <br> Use multiplication to check. $556 \times 7 \equiv ?$ $6 \times 7=42$ $50 \times 7=350$ $500 \times 7=3500$ $3,500+350+42=3,892$ |
| :---: | :---: | :---: | :---: |
| Understanding remainders | Understand remainders using concrete versions of a problem. <br> 80 cakes divided into trays of 6 . <br>  <br> 80 cakes in total. They make 13 groups of 6 , with 2 remaining. | Use short division and understand remainders as the last remaining is. | In problem solving contexts, represent divisions including remainders with a bar model. $\begin{aligned} & 683=136 \times 5+3 \\ & 683 \div 5=136 r 3 \end{aligned}$ |
| Dividing decimals by 10,100 and 1,000 | Understand division by 10 using exchange. <br> 2 ones are 20 tenths. <br> 20 tenths divided by 10 is 2 tenths. $\square$ | Represent division using exchange on a place value grid. <br> 1.5 is 1 one and 5 tenths. <br> This is equivalent to 10 tenths and 50 hundredths. <br> 10 tenths divided by 10 is 1 tenth. <br> 50 hundredths divided by 10 is 5 hundredths. <br> 1.5 divided by 10 is 1 tenth and 5 hundredths. <br> $1.5 \div 10=0.15$ | Understand the movement of digits on a place value grid.$0.85 \div 10=0.085$0 $\bullet$ Tth Hth Thth <br> 8 $\cdot$ 5   <br> 0 $\cdot$ 0 $\rightarrow 8$ $\longrightarrow 5$$8.5 \div 100=0.085$ |


| Understanding <br> the <br> relationship <br> between <br> fractions and <br> division | Use sharing to explore the link between <br> fractions and division. | 1 whole shared between 3 people. <br> Each person receives one-third. | Use a bar model and other fraction <br> representations to show the link between <br> fractions and division. | Use the link between division and fractions <br> to calculate divisions. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Year 5 Expectations:

- Count forwards and backward with positive and negative numbers through zero.
- Count forwards/backwards in steps of powers of 10 for any given number up to 1,000,000.
- Compare and order numbers up to $1,000,000$.
- Compare and order numbers with 3 decimal places.
- Read Roman numerals to 1,000 .
- Identify all multiples and factors, including finding all factor pairs.
- Use known tables to derive other number facts.
- Recall prime numbers up to 19.
- Recognise and use square numbers and cube numbers.
- Recognise place value of any number up to $1,000,000$.
- Round any number up to $1,000,000$ to the nearest $10,100,1000,10,000$ or 100,000 .
- Round decimals with 2 decimal places to nearest whole number and 1 decimal place.
- Add and subtract: o Numbers with more than 4-digits using formal written method.
- Use rounding to check answers.
- Multiply: 4-digits by 1-digit/ 2-digit
- Divide: Up to 4-digits by 1-digit
- Multiply and divide: Whole numbers \& decimals by 10,100 and 1,000
- Recognise and use thousandths.
- Recognise mixed numbers and improper fractions and convert from one to another.
- Multiply proper fractions and mixed numbers by whole numbers.
- Identify and write equivalent fractions.
- Solve time problems using timetables and converting between different units of time.


Maths is a passport to a world of career opportunities and primary maths is the foundation for this. The goal is developing
"Number Sense" - a kind of "maths fluency" which involves applying mental arithmetic accurately and quickly - and intuitively knowing if answers feel right or wrong.

Helping your child with maths at home can be daunting, but most parents are a lot better at maths than they think they are. It's worth putting on a "have a go" attitude because the extra practice and one-to-one attention can have a big impact. Helping can be as easy as playing a board game or discussing maths with your child. Finally, and most importantly, don't forget to encourage your child. You don't always need to understand what your child is learning

- showing an interest and encouraging always has a positive effect. Praise works best when it's for effort and not necessarily for being quick or getting top marks. Praising for effort encourages learners to try harder which promotes a good attitude to learning.

